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Preface i

Many-body physics aims at the deduction of the properties of large ensembles of inter-

acting systems starting from the characteristics of the single components; these so-called

emergent properties can not be easily deduced even in cases when the interaction be-

tween the elements of the ensemble has a simple form. In particular the large number of

coupled degrees of freedom makes it di�cult to predict the out-of-equilibrium dynamics

of such systems, in particular there is a complete lack of analitycal solutions and simu-

lations require a lot of resources [1]. In theoretical treatments, this problem is simpli�ed

with the aid of mean-�eld theories, which can have a limited range of applicability, or

with numerical simulations on a restricted number of elements.

In this thesis we present experimental results on a many-body system composed of cold

Rydberg atoms [7] in which the "simpli�cation" of the dynamics is achieved by inducing

a dissipative dynamics that leads to a simpler evolution of the system and allows us

to obtain information on the original, more complex dynamics. We present a basic

schematization of what we mean. Suppose that we have a system S, and an observable

x(S). Then if we perform measurements of x at di�erent times, we can understand how

x(S(t)) varies in time, which is only a fraction of the information contained in S. But

if at the time t0, we let the system evolve under the 'simple' dynamics condition, we

could get more information on the system at the time t0; maybe we could also be able

to access the observables y(S(t0)) and z(S(t0)), and, iterating the procedure for di�erent

values of t0, we can get a deeper insight into the 'complex' dynamics.

We apply this concept to the dynamics of cold Rydberg atoms in cold clouds, where the

van der Waals interaction causes the laser-driven dynamics of the internal and external

degrees of freedom of the atoms to be correlated and thus forming a complex many-body

system [13, 19].

The simpler dynamics we induce is based on the de-excitation of Rydberg atoms through

a coupling with a fast-decaying level: the dynamics that follows then concerns only the

atoms that are in the Rydberg state and not all the atoms in the ground state, and has

a simpler 'updating rule' because the possible transitions are only decay-like, while a

resonant coupling with the ground state can cause both an excitation of a ground state

atom and a de-excitation of an excited atom. We show that with this system it is possible

to infer information about the distribution of the interaction energies between the excited

atoms at a given point of the excitation dynamics. From the energy distribution, it is

possible to draw conclusions about the spatial con�guration of the excitations.

The original contribution of this thesis concerns the development of the experimental

setup needed for realizing the de-excitation phase in the laboratory of the Pisa BEC

group.



Preface ii

This technical improvement is related to the frequency switch that one of the laser of

the Rydberg excitation is subject to, in order to become resonant with the de-excitation

frequency. The technical part of this work extends beyond the technique needed for

the de-excitation; a chapter of this thesis is dedicated to the characterization of various

multi-frequency excitation techniques. Some applications of similar techniques have

already been demonstrated in recent works, such as [15, 18].

The experimental results obtained with their use, applied to di�erent aspects of the

Rydberg excitation dynamics which are the dynamics on resonance and the dynamics

out of resonance, are reported in the chapters 4 and 5.

Part of the work reported in chapter 4, the extension of the seed technique to a regime of

high seed number, is part of a publication currently under review at Journal of Physics

B (arxiv:1602.01257).

The last chapter is dedicated to the de-excitation as a method to gain information about

the excitation dynamics.

So far, de-excitation from Rydberg states has been used in a few experiments [14]. The

purpose of the present thesis is to show that it can give an insight into the interactions

between Rydberg atoms in terms of the energy distribution that is correlated with the

distribution in real space. We also provide indications that de-excitation could be also

used in the controlled preparation of spatial arrangments of Rydberg excitations, an

application very desirable for a new promising research �eld, that of quantum simulation

[3].

The core of the thesis is structured as presented above, and follows the two introductory

chapters on the general principles of Rydberg atoms physics and a description of the

experimental apparatus used to investigate such phenomena.
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Chapter 1

General properties of Rydberg

atoms

1.1 General properties of Rydberg atoms

This theorical chapter has the purpose of introducing the reader to the aspects of the

physics of Rydberg atoms that are going to be of importance over the course of this

thesis. A more complete overview of the topic can be found in numerous reviews [7].

Rydberg atoms are atoms excited to levels with high principal quantum number n > 20,

so more properly we should refer to these levels as 'Rydberg' and not to the atoms.

These states have properties, such as large polarizabilies and long lifetimes, that di�er

dramatically from those of low-lying levels. These properties are of interest because

they make Rydberg atoms easily controllable and detectable but also because they make

possible the realization with Rydberg atoms of strongly interacting systems.

We start recalling the spectrum of the hydrogen atom, that has energies that depend on

the principal quantum number n:

En = �Ryd
n2

Where Ryd is the Rydberg constant (� 13:6eV ).

For high n the energy of the states of every atom can be well approximated by the

hydrogen-like spectrum by changing the de�nition of the Rydberg constant and adding

a correction, called quantum defect, that accounts for the presence of core electrons

whose contribution to the energy is usually well approximated by a � 1
r4

potential (with

r distance between the electron and the nucleus). The energy of a level then depends

1
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also on the orbital angular momentum l and on the total angulat momentum j:

En;j;l = � Ryd0

(n� �n;j;l)2
(1.1)

where �n;j;l is the quantum defect correction and Ryd0 is the modi�ed Rydberg constant

that accounts for the di�erent mass of the nucleus and for the charge of the Coulomb

potential.

As n increases the quantum defect correction becomes smaller and it is usually neglected

when determining the scaling laws for the properties of the Rydberg atoms.

It is known that the orbital radius scales as n2: given that for the ground state the Bohr

radius is on the order of 10�10m, for a Rydberg state with n = 100 it can even reach

the micrometers scale, forming something we can call a giant quantum object.

This property can be used to demonstrate the others we are interested in. At �rst,

we can estimate that also the order of magnitude of the typical dipole moment, being

proportional to the matrix elements of r, scales as n2 and this origins a high sensitivity

to electric �elds, but also a strong dipole-dipole interaction.

The Rydberg atoms also have longer lifetimes than low-lying levels, that typically decay

within 10 � 100ns, up to hundreds of microseconds for states with n > 50, because of

the small dipole matrix elements between Rydberg states and low-lying levels. Actually,

since the biggest matrix elements are found between states with near energy, the typical

decay in an environment at room temperature is induced by the part of the blackbody

radiation in the microwave region, and not by spontaneous emission. Before reaching

the ground state, an electron visits numerous Rydberg states. The scaling law for the

lifetime is � n3.

Rydberg atoms are easily ionized, since their binding energy is smaller; the classic ion-

ization �eld scales as n�4, therefore can be as low as tens of V=cm. This is useful

for detecting them because Rydberg states can be easily �eld ionized and the resulting

electrons and ions can be revealed by charge multiplication thechniques.

The most impressive dependence on n is certainly that of the van der Waals coe�cient

C6, which determines the strength of the van der Waals interaction between two Rydberg

atoms:

Vint =
C6

jr1 � r2j6 C6 � n11

In the following sections, we explain how this interaction arises.
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1.2 van der Waals interactions

A simple two-atom model can show how the van der Waals interaction originates [2].

We have two atoms (1 and 2) at distance R = jRjn, that can exist in two Rydberg levels
j�i and j�i of opposite parity. We also consider a dipole-dipole interaction of the form

H int =
�1 � �2 � 3(�1 � n)(�2 � n)

jRj3

where �i is the operator associated with the dipole moment eri (ri is the operator dis-

tance between the Rydberg electron and the nucleus and e the electron charge). In the

Hilbert space we are considering (j��i,j��i,j��i and ��i), H int connects only the �rst

two and the last two states, because � has vanishing matrix elements between states of

the same parity. We consider the subspace spanned by j��i = j0i and j��i = j1i. We

evaluate the o�-diagonal matrix elements of H int substituting ��� where due and since

they depend only on R we can simply write them as C3
jRj3 where C3 is a constant that

can be taken real. The total Hamiltonian can be written then in the form

H =

0
@ 0 C3

jRj3
C3
jRj3 �

1
A

with � the energy di�erence between the unperturbed states, that we suppose positive

for convenience in a second passage. Diagonalization yields the new Eigenvalues:

E� = 1
2(��

q
�2 + 4

C2
3

jRj6 ).

We de�ne now RvdW =
�
C2
3

�

� 1

6
.

If R� RvdW the eigenvalues become:

E� = � C3
jRj3

whith eigenvectors j�i = 1p
2
(j0i � j1i).

In the opposite case, R � RvdW , we can see the wavefunction undergoes only a small

change because the o�-diagonal term has a smaller relative weight while the energy shifts

by

E0
1 � E1 = � C6

�jRj6 , E
0
2 � E2 = + C6

�jRj6
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Thus RvdW is the crossover distance between a dipole-dipole interaction that behaves

as � jRj�3 and a van der Waals interaction that behaves as � jRj�6. We have also

shown that, depending on the chosen state (� or �), van der Waals interaction can be

attractive or repulsive .

Now we de�ne C6 =
C2
3

� . Since C3 comes from a dipole-dipole interaction (which scales

as n2 �n2) and � scales as n�3 (if we use the energy di�erence between two near Rydberg

levels) we have also demonstrated the n11 scaling of the C6 coe�cient.

Its actual computation for a given state requires the knowledge of a certain number of

matrix elements between more than just two states as in the model above, but the basic

idea remains the one we have just reported.

The C6 value for the 70s state of
87Rb, which is the Rydberg state used throught this

thesis, is 2� � 1:2THz�m6
~. A more useful mnemonic rule for obtaining the strength of

the interaction is the scaling remembering that when jRj = 10:9�m, Vint = 2�1MHz.

In the following sections we are going to present some of the peculiarities due to this

interaction.

1.3 Coherent dynamics

By coherent dynamics we mean an evolution of the wavefunction, and consequently of

the expectation values of the observables, described only by the Schr�odinger equation.

This evolution always describes a pure state contrarly to the case when decoherence

due to interactions with the environment causes the wavefunction to end up in a mixed

state. Most of the experiments in this thesis have been performed in the incoherent

regime but it is useful to describe the basic principle of the coherent dynamics because

it constitutes a reference for the incoherent dynamics and also because it allows a �rst

display of the behaviour of van der Waals interacting systems. We start recalling brie
y

the derivation of the Rabi oscillations for a two-level system coupled with a resonant

light �eld, and we extend this treatment to the case when many two-level systems are

coupled via a van der Waals interaction.

We start with the single-atom Hamiltonian, which is

H = j1ih1j! + (



2
e�i!tj0ih1j+ h:c:) (1.2)

where ! is the energy separation between the two levels and the Rabi frequency 
 is

the strength of the laser coupling. It is easier to solve the Schr�odinger equation in the
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rotating frame j10i = ei!tj1i, j00i = j0i which makes the interaction term non dependent

on time. To account for this change of reference, the Hamiltonian becomes

H 0 = H � j1ih1j! =



2
�x (1.3)

The integration of the Schr�odinger equation i@t = H 0 yields

j (t)i = e�i



2
�xtj (0)i (1.4)

with �x the Pauli matrix, that can be rewritten in the form:

j (t)i = (cos(�i

2
t)I � i � sin(


2
t)�x)j (0)i (1.5)

where I is the identical matrix. It can be shown then that the populations evolve with

a frequency that is exactly the Rabi frequency 
:

jh1j ij2 = jsin(

2
t)j2 = 1

2
(1� cos(
t)) (1.6)

Now we add another atom near the �rst one. We suppose that j1i is a Rydberg level.

Since the j11i level is coupled by the laser light to the j10i and j01i o� resonantly, and

supposing Vint � 
, we remove it from our system.

Figure 1.1: Level shift due to inter-atom interaction. Transitions towards
the doubly-excited state from a single excitation state are shifted out of resonance if
Vint � 
. Vint is represented by the red curve while 
 by the width of the blue contour.
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Then in the rotating frame (the transform is performed as before on both atoms) the

total Hamiltonian becomes:

H =

0
BB@
0 
 



 0 0


 0 0

1
CCA which, diagonalized, becomes H =

0
BB@

0
p
2
 0p

2
 0 0

0 0 0

1
CCA

in the basis j0i, 1p
2
(j01i + j10i) and 1p

2
(j01i � j10i). The ground state is coupled

only to the entangled state 1p
2
(j01i+ j10i) with an enhanced collective Rabi frequency


coll =
p
2
.

This can be generalized to a set of atoms that gives a collective Rabi frequency 
coll =p
N
 between the ground state and a maximally entangled state where a single excita-

tion is shared between all the atoms. Enhanced Rabi oscillations have been observed in

[5, 4]. When we are examining excitation times longer than the laser coherence time, the

picture changes. Infact laser decoherence causes loss of coherence between the ground

state and the excited state with the result that the system 'decides' which atom is ex-

cited while the others remain in the ground state; this destroys the entanglement and the

enhancement of the Rabi frequency. We describe in the next section the di�erences that

arise in the fully incoherent regime which is the regime that characterizes the dynamics

we are going to study experimentally.

1.4 Incoherent Dynamics and statistics

We describe brie
y the theory for spins 1
2 coupled with a jRj�6 potential, that can be

found in detail in [9].

The Hamiltonian in the rotating frame is

H = �k

�

2
�kz +




2
�kx +�k;k0Vk;k0

where � is the detuning of the laser radiation from the atomic transition, 
 as before is

the strength of the laser coupling and Vkk0 is a potential which is non-zero and has the

van der Waals form only if both the atoms denoted by the indexes k and k0 are excited

to the Rydberg level. �x;y are the Pauli matrices. We consider a source of decoherence

that acts on the coherences between ground and Rydberg state of each atom with rate


.

@t� = i[�;H] + L� (1.7)

with

L� = 
�k(nk�nk � 1

2
(fnk; �g))
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The evolution for the matrix density can be simpli�ed in the case where 
 � 
. Basically

in this regime coherences can be neglected and the matrix elements becomes diagonal,

reducing the number of variables from (2n)2 to 2n (with n number of atoms). The exact

calculation that leads to the evolution of this reduced density matrix � is fairly complex,

so we show only the result and we comment it.

@t� = �k�k(�
k
x��

k
x � �) (1.8)

where �k = �0(
1

1+(
��Vint



)2
) and Vk = �k0nk0(jrk � rk0 j)�6

where nk is the projection operator on the excited state. Since the rates �k depend on

Vk which in turns depends on the state of all the other atoms, they must be evaluated

according to the con�guration of the excitations.

What the master equation basically says is that each state (whose probability is a single

diagonal entry of �) has a channel of gain and a channel of loss with all the states

that di�er from it by a single 
ip (�kx��
k
x), and the speed of the channel is governed by

the rates �k. The rate �k contains information about the interactions because it has a

lorentzian shape in function of the e�ective detuning which is the di�erence between the

laser detuning � and the interaction shift Vk.

The stationary solution is the tensorial product of identical density matrices for each

atom, and therefore does not depend on the interactions.

What interactions change then is the path that the system follows to reach the stationary

state i.e. the dynamics, and it is of much more interest than the steady state solution.

Although the number of variables has been considerably reduced, solving the master

equation analitycally is still an impossible task; the dynamics is usually simulated with

a lower number of atoms than in a typical experiment and under some approximation

which typically amount to neglecting the atomic motion and the disorder in the posi-

tions (usually regular positions on a lattice are used). In [9], we �nd also a numerical

integration based on a mean �eld assumption. A dynamics described by such a mas-

ter equation is no longer deterministic, because transitions are events which can occour

with a certain probability. Typically in the experiment the observable which can be

measured is the number of excitation; the associated quantity of interest then becomes

the mean number of excitations, averaged over a su�ciently large amount of repetitions.

Consequently we are interested in the amount of 
uctuations from the mean value. We

introduce the Mandel Q factor, or normalized second moment of the distribution [11]

Q =
h�N2i
hNi � 1 (1.9)
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which has the properties that: for a poissonian distribution, Q = 0, since h�N2i = hNi.

For a subpoissonian distrubtion, i.e., one that has less 
uctutations than a Poissonian

of the same mean number we have �1 < Q < 0; and �nally for a super-poissonain

distribution (larger 
uctuations than a poissonian one) the Q-parameter is larger than

0.

A deterministic process has Q = �1. The Q factor usefulness lies in the fact that a

poissonian distribution is characterized by absence of correlation between the events that

we are counting, therefore when Q 6= 0 we know that there is some sort of correlations

that, in our case, are useful to study interactions. If a Q 6= 0 implies correlation, the

other implication is not necessarely true: a correlated process can have Q = 0 too.

1.4.1 Dynamics on resonance

What happens when we point a laser resonant with the Rydberg transition on a sample

of cold, ground state atoms? We can see from the de�nition of the rates �k that in the

ground state � = j000::i each atom has a rate equal to �0, because both � and Vint are

zero. At a certain point, then, an atom will undergo a spin 
ip. What happens then is

that the rate for the atoms that have Vk > 
, is strongly suppressed (� � �0). This

happens in a sphere centered around the �rst excitation of radius

Rb =

�
C6




� 1

6

(1.10)

that is called blockade radius. This phenomenon, known as dipole blockade has been

observed in a wide variety of contexts [13, 2].
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Figure 1.2: Schematic representation of the excitation distribution in a
blockaded dynamics The presence of an excitation in a certain point decreases the
probability of neighbours being excited; therefore the most likely con�gurations are the

ones where the excitations are located at distances greater than Rb.

Then the second excitation will appear with much higher probability at a distance from

the �rst greater than Rb; the third one will have accessible the total volume minus two

blockade spheres and so on. When all the volume is �lled with blockade spheres the

resulting dynamics would evolve at a rate much slower than in the �rst part of the

excitation.

In the experiment, when we study the number of excitations in function of the excitation

time (we call such experiments time dependence) this slowing is clearly visible in form

of a slope change of the curve.

What we expect on the Q factor is that the �rst part of the dynamics will be poissonian-

like (Q � 0), because it is characterized by unrelated events and then gradually becomes

sub-poissonian because there is an occurrence of the mean number which is highly likely

and that number is about the ratio between the total volume and the volume of a

blockade sphere.

1.4.2 Dynamics out of resonance

When the driving �eld, respect to the Rydberg transition has a detuning that has the

same sign as the interactions, something really interesting happens. Now in the ground

state � = j000:::i the atoms can still be excited, only with a lower rate.

What happens when the �rst excitation appears, is that if the detuning has the same

sign as the interactions they can produce again a rate which is the resonant one in



Rydberg atoms 10

absence of interactions; this is true at a distance from the �rst excitation rfac =
�
C6
�

� 1
6

called facilitation radius.

Since the rate has a lorentzian shape in function of the detuning we de�ne a facilitation

volume which is the shell of radius rfac and width �r = 1
6rfac



�
and it is the volume

where the interactions make resonant the transition within a width given by the laser

linewidth 
. If an excitation is created in the facilitation volume ('facilitated excitation')

then a facilitation volume with a new shape appears (see �g. 1.3).

Figure 1.3: Representation of a facilitated dynamics. The presence of an
excitation can lead to other excitations at a distance rfac from the �rst; this facilitation

can generate a highly correlated avalanche process

This feature is very notable, since the detuning of the driving implies a well de�ned

length in the system; for example in a 1D system the presence of a �rst excitation would

lead with high probability to the formation of a chain with spacing rfac. The possibility

of introducing a characteristic length in the system acting on the laser detuning is of

great interest for experimental and theorical reasons, which vary from the creation of

ordered systems, to the relation to Ising-like or lattice models. The �rst excitation

that leads the facilitation process, can appear in a random time after the beginning

of the experiment. The trigger of the facilitation process can be provided by a fast

laser pulse on resonance which creates some Rydberg excitations in the �rst part of the

experiment. This technique, which we are going to refer to as 'seed', was demonstrated in

previous works [16] produced by the Pisa laboratory. The seed is an useful investigation

instrument for the dynamics out of resonance, because it eliminates the degree of freedom

of the starting point of the facilitation process which is a highly correlated process [10] .

Noting that this simpli�cation has been achieved with the use of two di�erent frequencies

in the same experiment (the resonant fast pulse and the remaining o�-resonant pulse)

we were motivated to extend the excitation schemes to other multi-frequency techniques

other than the frequency switch which is required by both the seed and the de-excitation.

We are going to present them in chapter 3.



Chapter 2

Experimental apparatus

A quick review of the experimental features is necessary in order to understand the

system we are referring to when reporting our results; this helps providing a concrete

representation of the phenomena we have introduced theoretically and also gives an idea

of the possibilities and the limits characteristic of our investigation.

In particular, we focus on the elements which are more relevant for the work presented in

the following chapters of the thesis. We start with a description of the magneto-optical

trap (MOT), which is a laser light-based method that allows the creation of spatially

con�ned cold ensembles of atoms (87Rb in our case). This sample provides some optimal

features for the Rydberg excitation, because of the reduced Doppler e�ect and the low

scattering rate between atoms, both due to the low particle speed. Also, in the majority

of experiments, the evolution of the external degrees of freedom happens in a timescale

much longer than the evolution of the internal degrees of freedom of the atoms, therefore

the atomic motion can be usually neglected (frozen gas approximation).

We explain then how the Rydberg excitation is performed in our experimental setup.

Since the trapping of the atoms and the Rydberg excitation are not simultaneous but

they alternate in a cycle, we explain how fast switching of the laser beams of the MOT

and of the Rydberg excitation can be achieved.

This fast switching is performed with the aid of acousto-optical modulators (AOMs); we

are going to see in detail how they function because they are a key part of the technical

work that has been done during this thesis and that is going to be presented in the next

chapter.

The �nal phase of the cycle is the measurement: through a ionization of the atoms in

the Rydberg state and a successive detection of the ions we are able to count the number

of Rydberg atoms. A quick overview of this procedure allows to understand what is the

11
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observable of our system, and how this in
uences the analysis of the data collected with

such a system.

2.1 The magneto optical trap (MOT)

The Magneto-Optical Trap [12] is a technique based on laser light which allows the si-

multaneous cooling and trapping of neutral atoms, down to � 200�K in a volume of

about (100�m)3 in a typical case in this thesys.

The physics behind this process is as follows: an atom which absorbs a photon and then

emits another photon by spontaneous emission receives, in average, a momentum equal

to that of the �rst photon because the spontaneous emission doesn't have a preferred di-

rection. By altering the probability of absorption in order to maximize this probability if

the photon and the atom are counter propagating the atom feels a slowing force (cooling);

by making this force (also) space-dependent a con�ning potential is obtained (trapping).

We sketch how the MOT principle works in a simpli�ed 1D con�guration (�gure 2.1).

Let's consider an atom which has two levels correspondent to an optical transition that

have respectively F = 0 and F = 1 (hyper�ne angular momentum) that implies the

possible values for the F projection on the z axis f of 0 for jF = 0i and 0,�1 for jF = 1i

The 1 level decays to the j0i level with a fast (�MHz) rate (
). The atom is irradiated

with light red detuned with respect to the 0 ! 1 transition in the �x direction with a

�� polarized light (which connects the jF = 0; f = 0i and the jF = 1; f = �1i states)
and in the +x direction with a �+ polarized light (which connects the jF = 0; f = 0i
and the jF = 1; f = +1i states). The jF = 1; f = 0i state is not coupled to any other

state. If a ground state atom is travelling in the +x (�x) direction it is more likely

to absorb a photon travelling �x (+x), because of the Doppler e�ect that brings its

frequency closer to resonance �! = kv (the frequency shift is equal to the product of the

wavevector of the radiation and the velocity of the atom), then in the average this tends

to slow the atom and the two counterpropagating beams act as a viscous medium; the

minimum temperature reachable with this method is known as Doppler limit and is on

the order of KT � ~
.

Then we add a magnetic �eld of the form B = �bxẑ: this lifts the degeneracy of the

jF = 1i level and splits it into three levels according to the Zeeman formula �E =

�gL�Bf � bx (where gL is the Land�e factor, �B is the Bohr magneton). Then the f = 0

level has everywhere the same energy (but remains uncoupled), while the f = 1 and
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f = �1 levels follows B (and then x, because of the choice of the magnetic �eld) with

two opposite behaviours.

0 10

F = 0

F

f

f

f hN
i

Vfac = V0

Vfac = 1:5V0

Vfac = 5V0

Figure 2.1: Magneto-Optical Trap Scheme Atoms are cooled and con�ned ex-
ploiting level shifts in a magnetic �eld gradient and absorption of photons with di�erent

polarizations

We can see that an atom on the right (left) will undergo mainly �� (�+) cycles because

that transition is closer to resonance, therefore it will feel a force actrattive towards

x = 0.

Putting togheter the two e�ects, the actual calculation, based on the stationary solution

of the Bloch optical equations, yields a force which can be expanded in the �rst order

in v and x:

F = ��v � �x (2.1)

where � is positive for a red detuning and � is proportional to b; this is valid when the

Rabi frequency of each process 
 is lower than the decay rate 
.

Atomic levels can be more complex, in the case of Rubidium (�gure. 2.2) and for the

gradients of the magnetic �eld we use (� G=cm) we can treat the Zeeman splitting as

a perturbation with respect to the hyper�ne structure. The trap cycle is conducted

between the j5s 1
2

; F = 2i and j5p 3
2

; F = 3i levels, which is a closed loop cycle because

the j5p 3
2

; F = 3i can decay only towards the j5s 1
2

; F = 2i state because of the selection
rule �F = 0;�1.

There is though a non-zero probability of exciting the j5p 3
2

; F = 2i level which may

decay in the j5s 1
2

; F = 1i level which is no more coupled to the trap cycle, and atoms

which end in this state would be lost from the trap. So we use another laser (called

repump) which couples the j5s 1
2

; F = 1i to the j5p 3
2

; F = 2i that can again decay into

the j5s 1
2

; F = 2i starting again the cycle.
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Figure 2.2:
87Rb levels used in the MOT The cooling and trappping cycle occurs

between the states j5s 1

2

; F = 2i and j5p 3

2

; F = 3i. The repump laser brings j5s 1

2

; F = 1i
atoms into the loop again. Laser transitions in red, spontaneous decay in green.

An actual MOT is composed by three pairs of counterpropagating beams with orthogonal

polarizations and by three pairs of coils in anti-Helmotz con�guration whose magnetic

�eld vanishes in the middle point. The laser beams are focused in the same spot where

the magnetic �eld has the zero value. This spot is contained in a vacuum chamber of

pressure 10�10mbar and it is the place where the cold cloud of atoms is located. The

trap is recharged through a constant 
ux of atoms obtained by vaporization.

The magnetic �eld has a linear gradient for the spatial extension of the cloud. By

adjusting the intensities of the currents of the coils this gradient can be changed and so

the depth of the potential and the extension of the cloud. In our case, the temperature of

the cloud is about 150�K, while the dimensions of the gaussian shape range from 30�m

to 200�m. We deduce the form of the MOT with a CCD camera (with a resolution
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of 3:3�m) that detects the 
uorescence of the trap cycle and through a software that

can count the number of atoms with a 20% error that allows an estimation of the peak

density; for our typical peak density �0, which varies from 1010 to 1011A=cm3 (number

of atoms per cubic centimeter), we can consider the cloud a Boltzmann gas; from the

temperature (� 150�K) we estimate a thermal velocity VTH of � 0:2�m�s. The camera

allows a measure of the density pro�le in two directions (x and y); we estimate the third

one using �2z = �x�y.

The phase of trapping and the phase of Rydberg excitation happen in two distinct times;

we control the timimg of both types of laser pulses using acousto-optical modulators

(AOMs). In the next section we explain their mechanism since the technical work of

this thesis, that we will report in the next chapter, concern the AOM of one of the lasers

that are used for the Rydberg excitation.

2.2 The AOM

We focus here on the working of the AOM which is not only fundamental in the real-

ization of the MOT, but also its understanding is crucial for the comprehension of the

technical work which will be explained in chapter 3.

AOMs are used for �ne and fast control of the laser frequencies, and for quickly turning

on and o� a light beam (� 100ns). They basically are crystals which are crossed by an

acoustic wave, stimulated by the application of a voltage oscillating at a radio frequency

(RF). The acoustic wave is absorbed by a particular material at the other end of the AOM

and doesn't bounce back. When laser light hits an AOM, a photon-photon scattering

with the absorption or stimulated emission of one phonon may happen (�gure 2.3). In

this case the outcoming photon's momentum and energy must satisfy:

k0 = k0 � kRF !0 = !0 � !RF (2.2)

(in the case of emission of a phonon with wavevector kRF and energy !RF , while in the

case of absorption we use the plus sign ). In analogy with Bragg's theory of di�raction

from crystalline planes the condition on the wavevector will be referred to as Bragg

condition and the scattered photon will be referred to as di�racted photon.

The RF and the light beam propagate in a orthogonal directions; this means that the

Bragg condition in
uences the di�raction angle.
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Figure 2.3: Schematic representation of the AOM. An acoustic wave travels
from a piezo-electric material stimulated with a radio frequency towards the absorber.
In the path, di�erent numbers of phonon may be absorbed or emitted after a scattering
with a photon than undergoes a change in its frequency and wavevector. Image Source:

Wikipedia.org

Actually, scattering can involve two or more phonons and so the output of the AOM is

composed by the unperturbed original beam or '0' order, the beam which corresponds to

a one phonon absorption (emission) or +1 (-1) order, two photon absorption (emission),

+2(-2) order and so on that are distinguishable because of the di�erent angle. The

Bragg condition can not be satis�ed for all of them at once; and can be optimized only

for one.

!RF is determined by an electronic device: this explains how its value can be controlled

with precision and how the RF can be turned on and o� fast. The time of reaction of

the AOM is about the time that the acoustic wave needs to travel the waist of the laser.

An AOM has a �nite range of RFs that can generate an e�cient di�raction; usually it

is a range of about � 40MHz centered around a central frequency of 50� 150MHz.

The control of the MOT beams with AOMs allows us to switch them on and o� rapidly.

They are switched o� 5�s before the beginning of the experiment; in this case we are sure

that the latter is performed from a state where all atoms are in the ground state, (given

the decay time of the 5p level which is � 30ns). The experiment begins when a RF is

sent to the AOM of the lasers that generate the Rydberg pulse. After the desired time,

this RF is switched o� and, after 500�s, the AOMs of the MOT beams are switched

on again. During this dark period the atomic cloud begins to expand because of the

�nite temperature, when the MOT beams are switched on again they restart capturing

the atoms. The whole cycle is repeated with a frequency of 4 Hz, which allows to take

� 200 repetition of an experiment in less than a minute. Than each experiment is

composed by di�erent 'shots' or experimental points which in turn are composed by a

number of repetition which is usually � 100. The greater the number of repetition, the

better the precision by which we determine the mean number and the Q factor of a
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given process. Since the 
uctuations of such measures is intrinsic in the behaviour of

the system, the notion of error of measure on the experimental point can be misleading,

and for this reason we do not report errors in our graphs. However, the value of the

standard deviation of a process can be deduced by the Q factor when reported.

2.3 The excitation scheme

The Rydberg state used in the experiments reported in this thesis is the j70si as we
have mentioned;

it is reached by a two-photon process by mean of a 421nm laser, which couples the

ground state j5si with the intermediate level j6p 3
2

i, and a 1012nm laser, which couples

the j6p 3
2

i with the j70si. A detuning �Blue of about 400�600MHz of the �rst transition

avoids the population of the intermediate state; the coupling between the ground state

and the Rydberg state can be described by an e�ective Rabi frequency whose amplitude

and frequency are given by:


Ryd =

421�
1012

�b
!Ryd = !421 + !1012

where !421 and !1012 are the frequencies of the two lasers and 
421 and 
1012 their Rabi

frequency. The two-photon process is the only one (i.e. the intermediate state is not

populated) as long as 
Ryd � �Blue.

The 421nm and 1012nm beams are switched on and o� by use of AOMs too. The

421nm laser can be sent to the atoms directly or via an optical �ber. These two possible

con�gurations are referred to as 3D and 1D respectively. The reason is that in the

3D con�guration the 421nm and the 1012nm lasers are copropagating, thus creating an

interaction volume with width of the order of the 421nm laser waist (which is about

40�m, while the 1012nm laser has a larger waist of about 80�m). Since the waist of

the blue laser is greater than the blockade radius, we can have neighboring excitations

along any direction. Instead in the 1D con�guration the waist of the blue laser is only

� 6�m, which is less than the blockade radius and a length comparable with a typical

facilitation radius, therefore we expect that in this case excitations tend to dispose along

the direction of the beam. Typically, the 1D con�guration allows a simpler interpretation

of the experiment while the 3D con�guration can be used to magnify an e�ect because

a wider possibility of interaction is presented.
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2.4 Detection

We detect Rydberg atoms with a �eld ionization and then with a a charge multiplying

device (a channeltron in our case). In order to be sure that we are detecting ions that

come from �eld ionization, we wait 30�s after the process of excitation to ensure that

residual ions which could have been formed by other processes (for example, population

of the intermediate state of the two-photon process which is ionized by a second absorp-

tion of a 421nm photon) have moved away. This waiting time has been determined by

a previous measurement.

After this waiting time, an electric �eld of 16V=cm ionizes the Rydberg atoms. The

ions thus created are directed with another electric �eld towards the channeltron whose

signal, recorded by an oscilloscope and analyzed by a software which contains a peak

�nding routine, allows the counting of the number of ions. Above a number of ions of

about 30 � 40 the resolution of the oscilloscope becomes comparable to the mean time

interval between di�erent ions so we perform measures with mean number under that

limit. The whole detection has an e�ciency (estimated) of about � = 40� 10%.

Figure 2.4: Scheme of the detection procedure An electric �eld ionize the
Rydberg atoms and accelerates the ions towards the channeltron. Its signal (on the

right) allows to count them one by one

This means that when we perform a series of measurements, the measured mean number

will be �hNreali and that also the statistics will be changed.

With some e�ort it is possible to demonstrate that also Qobserved = �Qreal [17]. When we

report an experimental value, we report the result of the measure and not its estimated

real value.

This section about the detection of the Rydberg atoms closes the chapter about the

experimental setup. At this point we have introduced all the elements necessary for

the comprehension of the following chapters of the thesis, which consist of a technical
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optimization of the apparatus we have just described, needed for the implementation

of the de-excitation. This optimization has lead also to the characterization of more

complex excitation techniques that are going to be described in the folllowing chapters.

The results that these have produced are reported in chapters 4 and 5, while the last

chapter is dedicated to the results of de-excitation.



Chapter 3

Multi-Frequency techniques

The implementation of the de-excitation phase in our experimental procedure has needed

an optimization of the experimental setup: here we quickly explain the reason. A typical

de-excitation experiment involves two parts: in the �rst one, some atoms are brought to

the Rydberg state with the usual two-photon scheme (421nm and 1012nm), in the second

one the 1012nm laser alone de-excites them. Since in the �rst part the 1012nm frequency

must satisfy !5s!70s = !421nm + !1012nm and in the second one !6p!70s = !1012nm this

involves a frequency switch in the 1012 laser, performed by changing the RF that is sent

to the AOM of the 1012nm laser.

This poses mainly two problems: the di�raction angle and the power of the output beam

of the AOM depend on the RF. Ideally, instead, we would want 
(r) not to be frequency

dependent.

During this work of thesis the optical path of the 1012nm laser has been changed in

order to include a double-pass into the AOM: this con�guration, known as cat's eye,

eliminates the angle problem, while the power problem is solved by a simple experimental

procedure. Both are described in this chapter.

The cat's eye also allows a wide variety of multiple frequencies excitation techniques,

which can involve a time-dependent frequency or the simultaneous use of di�erent fre-

quencies.

Research in this direction is motivated by the results of the 'seed' technique, based on

the idea that a fast pulse on resonance with the Rydberg transition can be used to trigger

the dynamics out of resonance, thus allowing the control of an event characterized by

high 
uctuations (see chapter 1).

Some of these multiple-frequencies protocols have been investigated during the thesis

period:

20
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� Among the techniques that make use of a time-dependent frequency we have con-

sidered discrete jumps and continuous sweeps.

� Among the techniques that use di�erent simultaneous frequencies we have consid-

ered frequency modulation and line broadening.

in this chapter we review their technical aspects and implementations; typically this is

a work of analysis of the electric signals followed by a check on the system. The results

obtained with these techniques are presented in chapter 4 and 5 of this thesis.

3.1 Cat's eye

The cat's eye is a con�guration of the optical path where there is a double pass of the

beam in the AOM: the di�racted beam is re
ected back and di�racted again. While the

single pass di�raction implies a correlation between the exit angle and the RF, because

of the Bragg condition, the double pass erases the memory of the two scatterings in the

photon momentum, but gives a doubled frequency shift.

Here is how it works (�gure 3.1):

Figure 3.1: Cat's eye scheme. The output photon exits with the same angle for
each radio frequency because the Bragg condition in the second di�raction forces it to

come back exactly on its own incoming path

Laser light, with the polarization that allows transmission through the polarizing beam-

splitter, is focused on the AOM. A convex lens, at a distance from the AOM equal to

its focal length, and a mirror act like a spherical mirror with the center at the AOM

position, re
ecting each ray on its incoming path. Therefore, the exit angle for the second

pass coincides with the initial input angle because of the unchanged Bragg condition.

The use of a two-times crossed ��
4
waveplate rotates the polarization by �

2 allowing the
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separation of the incoming beam and of the two-times di�racted beam, which is re
ected

from the beam splitter and sent towards the MOT. The orders of di�raction we are not

interested in are mechanically stopped before the lens.

An equivalent way to see this process is based on the photon-phonon scattering picture:

the �rst di�raction produces a change in the wavector of the photon k = k0+kRF (where

kRF is the phonon wavevector); the perpendicular incidence on the mirror gives a �1
factor producing k = �k0 � kRF and the second di�raction cancels the dipendence on

kRF and therefore on the RF: k = �k0 � kRF + kRF = �k0
On each pass, the frequency changes by !RF , and in the end we have: ! = !0 + 2!RF

(with !0 and ! initial and �nal photon frequency and !RF the phonon frequency).

The doubled frequency shift is also a positive side-e�ect because it doubles the e�ective

frequency range that can be used in experiments with variable frequency (it becomes

� 60MHz, twice the bandwidth of the AOM).

On the other hand the e�ciency e = Pout
Pin

depend more strongly on !RF : e
0(!RF ) =

e(!RF )
2 (�gure 3.4).

In our setup we have used a convex lens of 10cm focal length at about 10cm from the

AOM; the mirror is located about 20cm from it. We use the (-1) order (arbitrary choice):

the scattered photon has less energy than the original one.

We verify that the cat's eye has reduced the displacement of the beam as a function of

the RF. We use a beam-pro�ler, a CCD that allows to see in real time (via software)

the shape of a pulse with a resolution of 1�m. The beam-pro�ler is put at the MOT

position in an equivalent optical path realized putting a mirror between the lens that

focuses the 1012nm beam on the MOT and the vacuum chamber: the mirror is tilted in

a way that re
ects the beam towards the beam pro�ler which is put at a distance from

the mirror equal to the distance between the mirror and the MOT. This method allows

to see how much the light beam moves once it is sent to the MOT.

We can see (�gure 3.2) that in the range 50MHz � 80MHz the cat's eye reduces the

displacement from about � 100�m to about 15�m, while in the range 60Mhz�80MHz

we go from � 100�m to 3�m. Notice that the actual frequency changes two times faster

than the RF, so there is a gain of another 2 factor in the ratio frequency/displacement.

Since the laser waist (the range over which 
(r) changes signi�cantly) is about 90�s we

conclude that we can neglet the residual displacement.

In the sections that follow, we discuss the e�ect of the cat's eye on each technique, in

particular the doubled frequency shift.
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Figure 3.2: Comparison of the beam displacement on the MOT position
without (left) and with (right) the cat's eye. Adding the cat's eye reduces the
displacement due to the change of radio frequency to less than a beam waist (90�m).

3.2 Frequency jumps
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Figure 3.3: Frequency Jump At a certain point, the frequency changes value

This technique is the one used in the de-excitation experiment. The change in the

1012nm laser frequency is performed by means of an electronic switch which receives

two RF signals as inputs and outputs only one of them according to the value of a control

TTL signal. The switch between the two happens in a time of about 200� 300ns.

The use of two di�erent RF sources has the advantage of making possibile the indepen-

dent variation of each of them. On the other side, studying the response of the system

to the variation of only one RF (of two) present a technical complication respect to the

case where only one frequency is used. In the latter case in fact the frequency can be

varied directly changing the lenght of the laser cavity, a process which doesn't alter 


because it acts directly on the initial photon frequency !0.
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Figure 3.4: Double pass transmission Measurement of the optical power versus
the applied radio frequency with �xed amplitude of the radio frequency.

When instead we want to vary the RF while keeping �xed the output optical power, the

experiment must be preceded by a phase of calibration, that works as follows.

We �rst choose the desired output optical power, then for each of the RFs we are going

to use, we �nd the amplitude of the electric signal the produces the desired optical power.

3.3 Sweeps
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Figure 3.5: Frequency sweep The instantaneous frequency varies linearly in time

A 'sweep' is an excitation protocol where the instantaneous frequency is increased in

time; we are interested in linear variations of the frequency !(t) = !0 +
�!
�t t because

the simplest situation o�ers an easier interpretation of the experimental results. In a

certain sense a sweep is the continuous version of the frequency jump.
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We implement it by means of a Voltage Controlled Oscillator (VCO), a chip that gen-

erates a RF according to a control voltage V .

In our case the relation between voltage and frequency is not easily predictable, because

of the non-
at (in frequency) response of the chip. So we have to characterize di�erent

sweeps of the control voltage V (t) studying the resulting sweep in frequency space !(t).

We measure the instantaneous frequency with FFT of the VCO signal on a temporal

width of 200ns (� 20 oscillations at 100MHz). We then obtain the value of �!
�t (slope

of the frequency in function of time) with a linear �t in the linear zone.

The characterized sweeps have slopes which range from about 0:3MHz=�s to about

7MHz=�s in both negative and positive directions. The upper limit is given by the

voltage source while the lower limit is dictated by the increasing importance of non-

linearities (�gure 3.6 ).

Figure 3.6: Instantaneous frequency in function of the sweep time
for di�erent voltage sweeps Red=0.07V=�s, green=0:2V=�s, purple=0:28V=�s,
orange=0:4V=�s, blue=0:56V=�s. tmax for each sweep is determined by the time the

control voltage needs to reach its maximum amplitude

We noted that the VCO instantaneous output amplitude decreases as the RF increases,

and viceversa. Since this behaviour is the opposite to that of the AOM, we directly
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measured the instantaneous optical power with a fast photo diode (Figure 3.7) �nding

that the two e�ects tend to compensate each other and the relative variation of power is

less than 2�3%, a fraction we can neglet since we are not going to perform measurements

of precision: for example, studying a process which has hNi = 10 and Q � 0 the


uctuations are on the order of
p
10
10 � 30%.

Figure 3.7: Instantaneous output power for di�erent frequency sweeps
red=0:07V=�s, green=0:28V=�s,blue=0:56V=�s.The frequency range that the RF scans
from t = 0 to tmax is respectively 6MHz ,20MHz, 20MHz. tmax for each sweep is
determined by the time the control voltage needs to reach its maximum amplitude

The �nal test for each technique is to be done directly on the system in order to verify

the response of the AOM.

We call 'frequency scan' an experiment where the frequency is varied in order to check a

resonance or to measure a linewidth; we use it in this chapter in the specular way, as a

method to use the system to probe the light. Infact these experiment are performed in a

regime where the number of excited atoms is, to a certain approximation, proportional

to the spectral intensity of light at the resonant frequency. When we send a composite

spectrum to the AOM, there are multiple resonance conditions, one for each part of this

spectrum. Then if we expect that the number of excitations in function of the frequency

of the laser cavity is a specular reconstruction of the spectrum of the RF.

In the case of sweeps we verify that the atoms 'see' the expected frequency displacement

performing frequency scans at di�erent times of the voltage sweep (Figure 3.8). We

select the time window of the sweep that corresponds to the desired frequency with a

TTL switch between the RF source and the AOM. We can say that the AOM manages

to follow the frequency sweep because the centers of the frequency scans shift with the

expected velocity. When comparing results and expected values we have to consider a

two factor because of the double pass in the AOM. Note also the fact that the center of

the frequency scans shifts in the same direction of the sweep, because the resonance is
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met at the condition !Ryd = !0 � 2!RF ; the minus sign due to the use of the �1 order
of the AOM.

Figure 3.8: Sweep test on the atoms Frequency scans at times 0�s (red),5�s
(pink),10�s (green),15�s (blue),18�s (light blue) after the start of a sweep with slope
0:75MHz=�s. Excitation time of 1�s. The resonance condition is met at a frequency
that shifts with a slope which is 2 times the sweep slope beacuse of the double pass

into the AOM.

In this thesis we have used only linear protocols but their workings demonstrate neverthe-

less that more sophisticated protocols can be studied, for example non-linear protocols

or simultaneous variation of 
 [18].

3.4 Frequency modulation (FM)
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Figure 3.9: Frequency Modulation The instantaneous frequency is a sinusoidal
function of time
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Frequency modulation is a technique which o�ers a great control over the spectrum of a

wave using only two control parameters, namely the frequency and the amplitude of a

control voltage V ; its main interesting feature is the possibility to increase the spectral

width of the RF up to tens of MHz.

Here we recall the basic principles of Frequency Modulation, we explain how it can be

applied to our system and the work of characterization that has been done in order to

use it.

A wave is modulated in frequency when its instantaneous frequency is itself a sinusoidal

function of time

!(t) = !c + !dsin(!mt) (3.1)

with !c the central frequency (called the carrier), !d modulation depth and !m mod-

ulation frequency. We obtain it just by sending a sinusoidal wave to the VCO input.

Then we expect a dependence of !d from V (Voltage, also referred to as modulation

amplitude).

Integrating the relation between phase and frequency @t� = !(t) the aspect of the wave

is found:

w(t) = ei(!c+
!d
!m

cos(!mt)) = ei(!c+nmcos(!mt))

with nm = !d
!m

index of modulation. The Fourier transform of such a wave is known:

~w(!) = �k2ZikJk(nm)�(!c + k!m)

where Jk are the k
thorder Bessel J functions and � is Dirac's delta.

The spectrum is discrete, and has components (sidebands) which di�er from !c (carrier)

only by integer multiples of !m.

The intensity (I(!) = ~w(!)2) of the kth frequency is then proportional to J2k and since

jJkj = jJ�kj the spectrum is symmetric and centered around the central frequency !c
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Figure 3.10: Squares of the Bessel functions J2
k
k = 0 (blue), k = 1 (red), k = 2

(green), k = 3 (pink) versus modulation index. The higher the order, the higher the
modulation index nm of the �rst peak; this explains why increasing nm the spectrum

width increases.
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Figure 3.11: Spectral Distribution for di�erent nm. Top: nm = 0 (left); nm = 1
(right). Bottom: nm = 2 (left); nm = 30 (right). The spectral width increases with
nm. The graph for nm = 30 has di�erent axis; linewidth is arti�cial and inserted for

clarity.

Keeping in mind �g. 3.10 we can see how frequency modulation can be used to alter the

spectrum width. Jn(0) = �n0; infact in absence of modulation (nm = 0) only the carrier
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frequency is present (�gure 3.11a). As we increase nm other sidebands start to appear

and the carrier's height decreases (�gures 3.11b-3.11c); when !d � !m the distribution

is usually well approximated by a rectangule with half width equal to !d (�gure 3.11d).

Since �k2ZJ2k (nm) = 1 Frequency modulation does not change the total power, which

is spread over a larger range of frequencies.

We analyze with FFT the electrical signals, �nding that they are well described by the

ideal model which contains only the parameters n and !m (or !d and !m because only

two of them can be independent variables) at least in the frequency range of interest.

The measure of nm is performed as follows. When nm � 1 the modulation depth !d can

be estimated by measuring the half width of the spectrum (see �g. 3.11 for the nm = 30

case). Otherwise we obtain the index of modulation nm with an indirect method: at

a given modulation amplitude we measure the ratio of the height of two di�erent FFT

peaks, which are proportional to the spectral intensity, and see what is the value of nm

which yields the same ratio between the corresoinding J2k . We discriminate between the

in�nite possibile solutions by turning o� the modulation amplitude to zero and counting

the number of zeros of a given sideband crossed. We found that in both regimes the

modulation depth !d is proportional to the modulation amplitude (Figure 3.12).

Figure 3.12: Modulation index versus modulation amplitude. The modula-
tion frequencies used are !m

2�
=1MHz(green), 3MHz(red), 5MHz(black), 10MHz(blue).

Measurements made with the peak ratio method

Then to recover n for each (!m; V ) (modulation frequency and modulation amplitude)

we have only to see how the modulation index n depends on !m at a �xed V (�g 3.13).
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Figure 3.13: Modulation depth (!d
2�
) versus modulation frequency. Fixed

modulation amplitude (2 V). Squares are measurements with the half width method,
circles are measurements with the peak ratio method

When such a spectrum is sent to the AOM the resulting light spectrum will be the same

of the RF except for a shift of the carrier frequency into the light domain, given by

! = !0 � 2!c (with the minus sign that accounts for the fact that we are using the -1

order). The double pass in the AOM produces a spectrum with the same !m but with

doubled !d.

In fact if we suppose that a single pass has the e�ect

j!0i ! �ki
kJk(nm)j!0 + !c + k!mi

where j!i is a photon state denoted by its frequency, then the second pass produces the

state

�ki
kJk(nm)j!0 + !c + k!mi ! �k;pi

k+pJk(nm)Jp(nm)j!0 + 2!c + (k + p)!ni

Renaming k = K � p

= �K;pi
KJK�p(nm)Jp(nm)j!0 + 2!c +K!mi

= �Ki
KJK(2 � nm)j!0 + 2!c +K!mi

where in the last step we Exploit the properties of the bessel functions, �nding the

expected result.
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In our setup there is still a source of distortion due to the dependence of the AOM e�-

ciency on the frequency; we neglect this e�ect when the modulation depth is less than

the frequency range over which the AOM e�ciency changes by a factor 20%. This range

depends on the carrier frequency, usually it is on the order of 10-20MHz. In the cases

where we are interested only in the dependence on the modulation depth at �xed total

optical power we ensure that this is constant and don't consider distortion.

In the experiment the modulation parameters must be compared with the character-

istic frequencies of the system: We expect that modulation can change the excitation

dynamics only in the regime of a modulation depth greater than the laser linewidth

!d > 
.

Eventually, we verify that the atoms 'see' the spectrum we expect: in �g. 3.14 we report

a frequency scan with modulated spectrum; the same experiment without modulation

is reported for comparison. Even though we acknowledge the presence of distortion, we

have veri�ed that the spectrum that reaches the system is composed by a number of

non-zero sidebands spaced by !m close to the one expected.

We verify that the system follows the variation of modulation also varying the modu-

lation amplitude keeping the frequency �xed at resonance with a determined sideband

(Figure 3.15). We have noted that the e�ective modulation depth is smaller than the

expected one by a constant factor (about 1:3); we don't have any explanations for this

behaviour yet and we limit to take this factor into account when we use frequency

modulation on the system.
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Figure 3.14: Spectrum broadening with frequency modulation as seen by the
atoms Frequency scans: red points without modulation; blue points with a modulation
of !m = 5MHz, nm=1.59. We verify the presence of di�erent sidebands spaced by !m

in the spectrum that is sent to the system.
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Figure 3.15: Number of Rydberg excitations versus modulation index Exci-
tation frequency chosen on resonance with the carrier frequency. We expect the mean
number of atoms to be proportional to J0(nm)

2. What we see is that the actual mod-
ulation index seen by the system is reduced by a factor � 1:3 whose origin is still

uncertain.

3.5 Noise modulation
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Figure 3.16: Noise Modulation The instantaneous frequency has fast 
uctuations
around a certain value.

When we use as the source of the modulation for the VCO a white noise the resulting

RF will acquire a �nite spectral width 
RF . Combined with the laser linewidth this

gives rise to a controllable arti�cial line broadening (
2eff = 
2+
2RF ); this is interesting

because 
 is a fundamental parameter in the dynamical quantities of our system, for

example it enters the de�nition of the rate � � 
2



but also determines the width of the

resonant shell for dynamics out of resonance (as seen in chapter 1).

The maximum broadening that we can obtain with this system (�gure 3.17, about a

factor 1:5 respect to the original spectral width) is not so large that it necessitates a
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control of the angle (in the absence of the cat's eye it would give a displacement of the

beam much less than the waist of the laser).

Noise modulation does not alter the total optical power too; it simultaneously lowers

and broadens the lorentzian pro�le of the radiation spectrum.

This technique somehow extends the features of the modulation technique into a contin-

uos regime and it is more similar to what happens with low modulation frequencies in

the !m < 
 regime where because of the �nite linewidth the system can not distinguish

the di�erent sidebands.

Figure 3.17: Frequency scan with a noise modulation (red) and without
(blue). We �t the two curves with lorentzian �ts. The width increases as the height

decreases

In this chapter we have presented the technical implementations of some multi-frequency

techniques that the angle stabilization, provided by the cat's eye, makes possible. At

this point, we imagine the confusion of the reader who has followed the explanations of

the complexity of interacting Rydberg systems and has found that, in order to gain more

information on such a system, we have decided to introduce new degrees of freedom in

the excitation scheme. In the following chapters, where the experimental results of such

methods are reported, we show how these techniques can simplify the picture of the

particular aspect that is being studied.



Chapter 4

Results on the dynamics on

resonance

As we have mentioned, the motivation for exploring multy-frequency techniques derives

from the result obtained with the seed procedure, so it was natural trying to apply these

techniques to the seed itself.

First, we devised a technical improvement of the preparation of the seed state which is

about the suppression of the unwanted errors due to 
uctuations of the reference which

is used to keep �xed the lasers' frequencies. We brie
y explain how these 
uctuations

arise in our technical setup and we show how noise modulation and sweeps techniques

can reduce the e�ect of these 
uctuations on the creation of seeds on resonance.

Then we want to extend the characterization of the seed technique to the regime of

high seed number (up to a blockaded regime) studying how the number of seeds impacts

on the facilitated process. In particular, we analyze the mean number of facilitated

excitations in relation with the number of seeds. We show how this can be used to draw

conclusions about the spatial con�guration of the excitations (both seeds and facilitated

ones); these results will be useful in the last chapter.

4.1 Seed stabilization

The seed technique allows the control of the trigger of the dynamics out of resonance

which is a process characterized by high 
uctuations. These 
uctuations are an intrin-

sic feature of the highly-correlated system we are studying, but also the experimental
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procedure can have 
uctuations and both types of 
uctuations will combine to give an

e�ective 
uctuation observed in the experiment.

A noisy experimental setup can then worsen the visibility of an e�ect on the statistics

of a process.

The seed technique can su�er 
uctuations which are inherent the experimental proce-

dure, due to the method that is used to keep the lasers' frequency �xed, which functions

as follows.

A reference laser is locked electro-optically to an atomic transition and it is sent to a

Fabry-Perot cavity togheter with the 1012nm and 420nm lasers. A software receives the

cavity output and sends correction signals to the 1012nm and 420nm laser in order to

keep their frequency �xed respect to the reference.

Then we can have 'fast 
uctuations' (� kHz) which are due to a bad lock of the ref-

erence (which can be caused by electrical noise or interference with other modes of the

laser), and 'slow 
uctuations' that are due to temperature changes in the laboratory

(� 10�3Hz) that in
uence the air refraction index that alters the apparent length of

the Fabry-Perot cavity.

Fast 
uctuations may occur during the time of a single shot (� 25s for a shot of 100

repetitions), and therefore alter the statistics, slow 
uctuations alter the experimental

conditions from experiment to experiment.

The methods we are presenting reduce the e�ect of the fast 
uctuations. We indi-

cate with �! the standard deviation of the random variable !(t). Fluctuations on

the reference have a greater e�ect on the dynamics on resonance, and therefore on the

seed, because they become relevant when the standard deviation becomes comparable

to the laser linewidth �! � 
 while the e�ect on a o�-resonant dynamics becomes non-

negligible only when the standard deviation �! is almost on the order of the detuning �.

Note: in the ideal case of �! = 0 and in the regime of small number of excitations

the seed is still not deterministic because it is a poissonian process and thus have its

own intrinsic 
uctuations; we expect a Q value of zero in this case, which implies <

(�N)2 >=< N >. We use the Q factor to quantify the stability of the seed we want to

improve: the lower Q, the better the stability.

We are going to see how, using a broader excitation spectrum, we can achieve this.
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4.1.1 Noise modulation

The noise modulation increases the spectral width to 
eff > 
. Since the relative e�ect

of 
uctuations is given by the ratio �!


, which is to say that they must be compared

with the characteristic frequency of the excitation, a higher spectral width 
 can be used

to perform an excitation which is less sensitive to 
uctuations.

Figure 4.1: Decrease of 
uctuations with noise modulation
hNi (small points) andQ factor (empty circles) as a function of the time of the excitation
on resonance without modulation (Red points) and with a noise modulation (Blue
Points) in an arti�cial condition of high 
uctuations. The Q factor becomes smaller
with a larger spectral width. Counterintuitively, noise can be used to reduce 
uctuations

Fig. 4.1 shows the number of excitations as a function of the excitation time with a

frequency 'slightly' out of resonance; by this we mean that the frequency was chosen

on purpose on the side of the lorentzian pro�le of the resonance where the e�ect of


uctuations on atoms is greater because of the non-zero derivative of the pro�le. The

curve with a noise modulation, in the same conditions, has a lower Q factor, because

of the decreased relative importance of the 
uctuations in the determination of the

resonance condition.

4.1.2 Sweep

Seed excitations can be created using a sweep across the resonance frequency. We explain

why it should reduce 
uctuations.

The instantaneous frequency !(t) varies from repetition to repetition of a single shot in

a range de�ned by �!, due to fast 
uctuations. It can be considered constant, though,

during the time of the seed preparation, � 1�s.
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Figure 4.2: Reduction of 
uctuations for a sweep-generated seed Counting
histograms for a seed generated in an arti�cial condition of high 
uctuations (Blue
Bars, hNi = 3:56, Q=1.22) and, in the same condition, with a sweep across the reso-
nance frequency (Red Bars, hNi = 3:58, Q=0.2). The sweep-generated seed has lower


uctuations around the mean value.

With a sweep over a range greater than �!, we can be sure that there is a moment

during the sweep where the resonant condition is matched.

Since the sweep we have characterized (as seen in chapter 2) are linear, this means that

the time spent on resonance does not depend by the actual realization of !(t) during

that particular repetition. To obtain time of resonance, we can use the estimation


(
�!sweep

�t )�1 which is the time that the sweep with slope
�!sweep

�t needs to cross a laser

linewidth.

We choose the sweep direction in order to make the laser frequency vary from a blue

detuning to a red detuning, in order to avoid interaction-facilitated excitations that

could follow the resonant excitation. In �g. 4.2 we compare the counting histograms of

a 'slightly out of resonance' seed and of a sweep-generated seed of equal mean number.

In the �rst case we have higher occurrence of values higher and lower than the mean

number, while the excitation performed with the sweep becomes again poissonian (as it

is demonstrated by the lower Q factor).

4.2 High seed number

Previous works on the seed have made use of a mean number of excitation on resonance

around 1� 2 seeds, just enough to be sure that the probability of having no excitations

was much smaller than the probability of having at least one. This has been done in

the optics of studying the triggering of the o�-resonant dynamics. Now we want to

investigate what happens when we start from a high seed number, which is to say from

a situation that is already blockaded. The motivation are related to the intuition that
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this could give information about the spatial con�guration of the excitations, both on

resonance and out of resonance.

We explain better: we expect two contrasting e�ect to be at play with an high seed

number. On the one hand, each atom created on resonance contributes to the growth of

the facilitation volume, therefore should increase the number of facilitated excitations.

On the other hand, we can not say exactly how close the excitations are in a blockaded

situation, but only make an estimation based on the interaction volume and the volume

of a blockade sphere; if the excitations were so close that also the dynamics out of

resonance result we would expect the opposite e�ect, which is to say that also the

dynamics out of resonance is blockaded.

Moreover, the two type of excitations have two di�erent dependence from the density and

this fact too could give information about the spatial con�guration of the excitations.

Infact, due to the dipole blockade, the dynamics on resonance has a weak dependence on

the density and we expect that the excitation it creates are more uniformly distribuited.

Instead the dynamics out of resonance depends strongly on the density because of the

dependence on the number of atoms in the facilitation shell; in this case we expect that

excitations created o�-resonantly are localized in the higher density zone.

The angle stability guaranteed by the cat's eye allows the best condition to observe

an eventual e�ect because the interaction volume is the same for both resonant and

o�-resonant dynamics.

The experiment is conducted as follows. We change the number of seeds varying the

duration of the resonant pulse.

After the seed phase the IR frequency is switched out of resonance, with detuning in the

range 20� 30MHz), for a �xed time. We used 1D con�guration because here we have

a simpler picture of the blockade which acts along only two directions. We analyze the

numbers hNfaci and hNfaci
hNseedi versus hNseedi.

The ratio
hNfaci
hNseedi , shows that indeed we don't have an independent avalanche for each

seed, but that given enough time for the out of resonance radiation to reach saturation

all the chains start interacting (and blockading) with each other.

We have found that the relation between hNfaci and hNi is not monotonic but there is a
certain seed number above which hNfaci decreases; we interpret this with the fact that

as the interaction volume is �lled with seeds less space is left for facilited excitations in

it.

In particular we have found that this inversion happens for a number of seeds hNseedi
that corresponds to a mean distance between seeds which is about 2rfac. This is indeed
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Figure 4.3: Number of facilited excitations as a function of the number of
seeds. A high number of seeds can block the dynamics out of resonance: the number of
facilitated excitations has infact a maximum and then, increasing the number of seeds,

decreases. Nfac and Nfac=Nseed vs Nseed

the condition by which, in a ideal 1D situation, adding a seed between two excitation at

that distance cause a blockade of an o�-resonant excitation.

In conclusion, we have demonstrated that excitations on resonance can produce an e�ect

on blockade also on the dynamics out of resonance. Moreover, we have got indications

that the deviation from a perfect 1D system is small. This is going to be of help in the

last chapter where we will use simulations with perfect 1D systems.



Chapter 5

Results on the dynamics out of

resonance

Density of the MOT (�) and detuning (�) play a fundamental role in the dynamics out

of resonance, because they determine the number of atoms in the facilitation volume

( ~N).

We brie
y review the simple, one dimensional, model which highlights this role and has

been used for qualitative comparison with experimental results. We refer to this model

as 'static', because it neglets the dynamics of the external degrees of freedom of the

atoms (frozen gas approximation).

Using the techniques described in chapter 3, we can obtain an arti�cially greater linewidth


, which, according to the static model, should results in a greater facilitation volume

Vfac or, equivalently, simulate a greater density. During this work of thesis this hypoth-

esis was subjected to experimental veri�cation.

Since the results seem to indicate instead that there is no clear dependence of the

dynamics on 
, we develop another model which takes into account also the external

degrees of freedom ('dynamic model') and explains the experimental results.

Description of this model, implications and future experiments are discussed.

5.1 Static model for the out of resonance dynamics

The static model allows a prediction for the counting histograms P (N) (and consequently

hNi and Q) for a 1D chain of facilitated excitations given the MOT pro�le, the detuning
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of the driving laser and the laser linewidth 
. The resulting counting histograms can be

used for qualitative comparison with experimental histograms.

Figure 5.1: Experimental and simulated counting histograms Experiment
(left): the same ~N generated with two di�erent combinations of � and � gives a similar
result (red bars and black lines). Simulation (right): with the same experimental
parameters and accounting for the �nite detection e�ciency (bars); dashed line is the

real counting distribution.

The chain can start with a seed, that we can have with a certain probability Pseed, in

the center of the MOT.

We consider the probability of �nding at least one atom in the facilitation volume; in this

case we excite it with probability 1. De-excitation processes or non-facilitated dynamics

are completely neglected.

The probability of excitation is then 1�e� ~N(rfac); infact e� ~N is the probability of �nding

no atoms given a poissonian distribution of the number of ground state atoms in the

facilitation volume with mean equal to ~N(r) = �(r)Vfac.

�r may be taken to be gaussian �(r) = �0e
� r2

2�2 with width � and peak density �0.

After the excitation the facilitation volume shifts and is located at a distance rfac from

this second excitation, and the process can be iterated. We consider dynamics occuring

only in one direction for simplicity.

The probability of realizing N excitations P (N) then becomes simply the product of

Pseed and the probability of taking the other N � 1 steps (for a total of N with the seed

one), multiplied by the probability of not taking the N + 1 step:

P (N) = Pseed ��N�1
n=1 (1� e� ~N(nrfac)) � e ~N(Nrfac) (5.1)

We consider only N which satisfy N � 1 < texc� which is to say the maximum number

of steps occuring at a rate � in a total excitation time texc.

The major implication of this model is the di�erent role played by � and 
, on which
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Figure 5.3: Experimental dependence of the mean number and Q factor
on the detuning There is a qualitative agreement with the prediction (�gure 5.2) of
the static model that reproduces both the decrease of the mean number and the peak
of the Q factor. 1D geometry, hNseedi = 0:8, 


2�
= 1MHz, �x = 120�m, �y = 90�m,

�0 = 1011 A
cm3 , � = 100�s.

PN depends almost exponential-like, and by � which plays only a marginal role beacuse

it determines only the maximum number of steps that can be taken. For long times (or

high �) (texc � �
�rfac

(ln(�(0)Vfac))
1

2 ) this in fact means the we are starting to consider

chains whose last steps are very unlikely, and therefore do not alter signi�cantly the

probability distribution.

These dependences from the dynamical parameters could be generalized also the 3D

case, although here we don't dispose of an equally simple model.
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Figure 5.2: Simulation of the dependence of the mean number and the Q
factor dependence from the detuning The static model predicts a decrease of the
mean number and a peak of the Q factor as the detuning increases. � = 1011 A

cm3 ; � =
50�m, hNi = 1

From P (N), we can �nd hNi and Q. If we plot them in function of the detuning (�gure

5.2) we see that hNi, as expected, decreases with � while Q has a peak in the transition
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zone between e�cient-ine�cient avalanche process. An e�cient avalanche process pro-

duces chains longer than the MOT width the majority of the times, while an ine�cient

one doesn't. We expect that both situations have a low Q while the transition regime

must have an higher one because of the occurence of high and low N realizations with

a similar weight.

We can see that this trend is con�rmed by the experiment (5.3).

In �gure 5.4 we plot the mean number in function of the detuning for di�erent values

of the facilitation volume, in order to give an idea of the expected e�ect of an arti�cial

broadening according to the model we have just presented. We introduce the parameter

� which is the ratio between the increased facilitation volume and the original one

V eff
fac =Vfac.

Since the transition between e�cient-ine�cient avalanche is characterized by a variation

of both hNi and Q we expect this to be the ideal experimental regime to test our idea

studying the dependence on �.

Figure 5.4: Simulation for di�erent values of the facilitation volume. Ex-
pected e�ect for di�erent � =

Vfac
V0

. � = 1, same parameters of �gure 5.2,(red), � = 1:5
(pink), � = 5 (blue).

5.2 Experiment

The techniques of noise and frequency modulation can help to produce a greater Vfac.

With noise modulation and in the regime of low modulation frequency infact we have a

greater linewidth 
 because the spectral width is increased.

In the case of high modulation frequency we have a spectrum composed by di�erent

frequencies; then the facilitation volume becomes the union of the facilitation volumes

that each of those frequencies would have by its own.
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We estimate � (ratio between the increased facilitation volume and the original one)

using � =

eff



for the noise modulation case and � = !d



for the low modulation

frequency case (!m < 
). Basically we are using the ratio between the increased spectral

width and the original one. Instead, in the high modulation frequency regime (!m > 
)

we use � = 1 + 2nm (� number of sidebands signi�cantly di�erent from 0).

� ranges from � 1:5 (in the case of noise modulation, as seen in chapter 3) to � 5 � 7

(frequency modulation). Both techniques, as we have seen in chapter 3, don't in
uence

the total optical power.

The experiments are performed under di�erent conditions: the parameters of the system

we vary are MOT density, detuning, laser power, number of seeds, excitation time.

Peak density has been varied from � 1010 to � 1011atoms=cm3 and � from � 10MHz

to � 50MHz; ~N(0) was estimated to be � 1 � 4. The density was varied by changing

the magnetic quadrupole intensity that determines the width of the MOT with the

consequence that to have a denser MOT one has to use a smaller one. The minimum

MOT width used has been about 40�m � 8rfac, enough to produce a chain of excitations

of a measurable number of atoms.

Typical 
Ryd used varies from 2� � 100kHz to 2� � 700kHz (with a maximum �

of 2�0:7MHz then). We choose 'high' excitation times, that allow for a chain whose

elements are formed with a rate � to cover the MOT width; a typical 'high' time is

� 100�s.

We investigate both avalanche with seed and without (when the avalanche is triggered by

'spontaneous' seeds that are formed out of resonance). The issue with the spontaneous

seeds is that, although their dynamics doesn't depend on �, as long as we keep 
eff < �

(avoiding portions of the spectrum to come near resonance), in principle they could

decrease the relative importance of the e�ect we are trying to observe.

For this reason, we always check that the value of the Q factor is high (& 2); we cannot

know whether the avalanche was started by an arti�cial seed or by a spontaneous one

but we have the con�rmation that a facilitated process is happening.

The experiment is carried out in this way: after we �x all the parameters we have

just explained we choose the detuning that maximizes the Q parameter (the region of

maximum expected e�ect, as we said before). We study how the mean number and the

Q factor vary for di�erent values of �, obtained with the techniques explained. What

we �nd is that neither hNi or Q undergo a variation above the level of 
uctuations.
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Figure 5.5: Experimental Dependence on the arti�cial manipulation of the
facilitation volume 3D con�guration, �

2�
= 46MHz, !

2�
= 3:5MHz, hNseedi = 0,

� = 100�s, 


2�
= 660kHz, �x = 150�m, �y = 120�m

Then we try to reproduce the scaling of �g. 5.4 by studying how the dependence on

the detuning is a�ected by a � 6= 1. This experiment does not show a relevant e�ect

produced by a variation of �.
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Figure 5.6: Experimental Dependence of the mean number on the detuning
with and without noise modulation 1D con�guration, hNseedi = 0, � = 50�s, 


2�
=

2:2MHz, � = 50�s, �x = 132�m, �y = 99�m. Red points have no modulation, blue
points have a noise modulation. The increased facilitation volume does not reproduce

the scaling predicted by graph 5.4
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Figure 5.8: Dependence of hNi and Q on the excitation time with and
without a modulation with a high modulation frequency 1D con�guration,
�
2�

= 20MHz, hNseedi = 2, 


2�
= 250kHz, �x = 40�m, �y = 30�m, Red points

without modulation, blue points with modulation !m
2�

= 2:5MHz; nm = 1

We have found that � doesn't have a relevant impact on hNi and Q for high excitation

times, the regime where the predictions of the static model were based.

Now we want to study how � a�ects the dynamics even for small times, to see if it has

a role in the way the state we �nd for high times is reached. We perform experiments

where we compare the curves in function of the excitation time with � = 1 and � 6= 1,

�nding that also in this case � does not alter the dynamics (�gures 5.7,5.8,5.9).
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Figure 5.7: Dependence of hNi and Q on the excitation time with and
without a modulation with a low modulation frequency 1D con�guration. �

2�
=

12MHz, hNseedi = 11, 


2�
= 1MHz, �x = 12:6�m, �y = 12�m. Red points without

modulation, blue points with modulation !
2�

= 100kHz, nm = 34.
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Figure 5.9: Dependence of hNi and Q on the excitation time with and
without a noise modulation 1D con�guration, �

2�
= 20MHz,hNseedi = 0, 


2�
=

2:2MHz, �x = 132�m, �y = 99�m. Red points without modulation, blue points have
noise modulation.

We have seen that increasing arti�cially the facilitation volume does not in
uence rele-

vantly, as expected, the facilitated dynamics.

The study of the curves made varying the excitation time has also a stronger implication,

which follows from the this consideration. We have used techniques that don't alter the

total optical power, which is to say that when we increase the spectral width of the light

we spread this power over a larger range. Since the system doesn't react to this spread,

this suggests that the relevant dynamical parameter should be related to the optical

power alone. In the next chapter we present a possible explanation for this behaviour,

that takes into account this suggestion.

5.3 Dynamic model

The static model assumes that atoms don't move considerably during the time of the

experiment: this is true when we compare the mean displacement due to thermal motion

in a typical experiment time to the blockade radius (� 10�m), but out of resonance the

smallest natural length is the facilitation shell width which is more than two orders of

magnitude smaller.
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Figure 5.10: Representation of the atomic motion in and out of the facili-
tation volume. Ground state atoms at thermal speed cross the facilitation volme in

a time shorter than the characteristic time of the internal variables

For our typical excitation rate �, moreover, the interaction time tint (time spent in the

facilitation volume) is much less than the excitation time (� ��1); �nding an atom in

the facilitation volume then is not enough to excite it with considerable probability. For

example � = 20MHz implies �r = 33nm; an atom which travels at thermal motion

(VTH , about 0:2�m=�s for T = 150�K) ) needs only 165ns to cross it, while our typical

� doesn't reach 1MHz.

Starting from these considerations, we derive the probability of a facilitated excitation

considering the thermal motion and an incoherent process, �nding that the dependence

on the linewidth 
 (and consequently the gain in the facilitation volume �) is canceled.

Since �tint � 1 an atom that passes through the facilitation volume than has only a

small probability of being excited Pexc which can be deduced from the master equation:

@tPexc = �(t)(PN � Pexc)

where PN is the probability of having a con�guration of N excitations that generate

a facilitation volume through which our atom is passing. Since Pexc � 1 we neglet

it on the right side and, approximating �(t) = �0 during tint (and 0 elsewhere) and

integrating we �nd Pexc = �0tint.

There is though a continuos 
ux of atoms through the facilitation shell that then have

a similar (small) probability of being excited.

Leaving out considerations about the angle and the thermal speed which add compli-

cations but don't change the order of magnitude of the parameters at play, we use an

average interaction time ~tint � �r
vTH

.

Then if we want to �nd how the probability of making a facilitated excitation varies

with time we have to consider a 
ux of atoms through the shell which is � =
~N

~tint
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(with ~N = �Vfac). Notice that � does not depend on 
, because both ~N and ~tint are

proportional to it.

Then �xed a con�guration of N excitations, we have @tPN+1 = PMPexc� which is to

say that the e�ective rate becomes:

�0 = Pexc� = ��Vfac (5.2)

substituting the de�nitions.

What this formula says is: the e�ective rate is the product of the single-atom rate

multiplied by the mean number of atoms that are resonant.

The dynamics is described only by �0 which does not depend on 
: infact 
 appears in

Vfac � 
 and in � � 
�1 therefore its contribution is canceled. This explains also why

the curves in function of the excitation time seemed not to be a�ected by the variation

of �. Also the dependence on ~tint is canceled, and consequently that on the thermal

velocity.

Although the expression for the e�ective rate �0 seems simple, �0 depends on Vfac which

in turn depends on the atomic con�guration, so extending this reasoning to a generalized

master equation is a work which has not been done yet and has its own amount of

theoretical and numerical investigation and goes beyond the purpose of this thesis,

Since �0 contains the same dependence on 
2 (total optical power) and � this predicts

the same scaling for a variation of each of them; the experimental veri�cation of this

prediction is going to provide a �rst observation of the validity of this model.

5.4 Considerations on a coherent treatment

We have so far assumed facilitated dynamics to be an incoherent process; this doesn't

quite agree with the comparison of the mean interaction time (� 100ns) and the coher-

ence time (which can be estimated using 
�1 � 1� 2�s).

We present a simple reasoning that shows that the assumption a completely coherent

process doesn't alter the main results obtained so far.

In this case we can suppose that an atom who is passing through the facilitation volume

and starts a Rabi oscillation, using the approximation of small interaction times, gets a

Pexc = �
2. � is a constant which we can not determine now but we expect it is related

to the velocity of the atom that is the only dynamical parameter that remains since in

the coherent regime the linewidth 
 doesn't play any role. When we substitute this Pexc
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into eq. (5.2) we �nd once again an e�ective rate which doesn't depend on 
, and that

is proportional to �,Vfac=
 and 
2.

The dependence on 
2 is worth to be further examined: in a dynamics described only

by �0 the physical quantities evolve as functions of 
2t. This may sound strange because

a coherent dynamics is usually described by functions of 
t; the origin of this behaviour

as we have seen is in the thermal motion.

To distinguish a coherent from an incoherent dynamics, on resonance, this experiment

is usually performed: di�erent time dependences for di�erent 
 are taken, then the time

axis is rescaled using 
 or 
2. The zone of the curves where the dynamics is coherent

would collapse togheter with the 
 scaling, the zone of the curves where the dynamics

is coherent would collapse togheter with the 
2 scaling.

The above results mean that such a method cannot be used to distinguish between the

two in the dynamics out of resonance, because also a coherent process would scale with


2.

5.5 Conclusions

In this chapter we have shown the results of the arti�cial manipulation of the facilitation

volume, which is a relevant quantity that governs the o�-resonant excitation dynamics.

This manipulation was achieved through a larger e�ective spectral width (
) of the

laser �eld. We have found that, because of the disorder induced by the thermal motion

(vTH � 0:2�m=�s) the spectral width loses its importance and its variation doesn't

in
uence the dynamics. The thermal motion becomes relevant when dealing with the

dynamics out of resonance because the smallest natural length scale is the width of the

facilitation volume, which is crossed by atoms at thermal velocity in a time much shorter

than the inverse of the excitation rate.

This conclusions were drawn after the work of analysis of the experimental data.

Since we derived a model which predicts the same scaling for quantities like 
2 and �

the validity of this model can be tested in the next future.

We also suggested that the thermal motion must be taken into account when estimating

the degree of coherence of the facilitation process; infact it determines the interaction

time which must be compared to the coherence time to determine if a coherent or an

incoherent dynamics prevails.



Chapter 6

De-excitation dynamics

Before reporting the experimental results of the de-excitation, an additional premise on

the theoretical framework we use to describe the de-excitation dynamics is necessary, so

we brie
y sketch the theory of a two-level system with a loss from one of the states.

We study experimentally how the interactions modify this picture and we show how this

mechanism can be used to gain information on a system which has been subjected to

Rydberg excitation.

In particular, de-excitation permits a sort of spectroscopy which allows to investigate

the interactions between Rydberg excitations. We �nd results in good agreement with

the ones obtained in previous works on the excitation dynamics but we present also

completely new results.

Then we study de-excitation dynamics, �nding that it is somehow specular to the exci-

tation dynamics and again we �nd agreement with previous results and report the new

aspects that have emerged. Moreover, we �nd evidence that de-excitation dynamics

can be used to increase the accuracy of the preparation of states with particular spatial

distributions demonstrating that de-excitation is not only an investigative tool but also

an active method that can be used to control complex many-body systems.

The experiment performed with the 1D geometry show a good agreement, to a qualitative

level, with numerical simulations performed by Guido Masella and we use them to

con�rm the validity of our interpretation.

52
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6.1 Theory

De-excitation dynamics is a highly correlated process, as excitation dynamics, because

of the interactions between Rydberg atoms so it useful to show the theory for a non-

interacting two-level system with a channel of loss that provides a basis for the under-

standing of de-excitation when, during the presentation of the experimental results, the

interactions will be added.

We have j70si = j1i and j6pi = j0i which decays spontaneously with a mean lifetime

�6p � 120ns to the j5si which is no more coupled with any other level.

In the rotating frame we have the hamiltonian

H =
�

2
�z +




2
�x

where � is the laser detuning respect to the 6p! 70s transition and 
 = 
1012nm.

H, together with an incoherent term L6p due to the decay of the j0i state dictates the
evolution of the matrix density �:

@t� = i[�;H] + L6p (6.1)

where

L6p =
1

�6p

 
��00 �1

2�01

�1
2�10 0

!

The incoherent term produces a loss of atoms which exit from the system and a decay

of coherences between the Rydberg and the intermediate level. We leave out the �nite

laser linewidth as source of decoherence since the coherence time of the laser (2�3�s) is

much greater than �6p � 120ns. For the same reason, we also neglet spontaneous decay

from the Rydberg state (�70s � 150�s).

In general the exact solution for �11 will contain also a trace of Rabi oscillations, beside

the decay induced by the intermediate level. We are interested in the solution in the in-

coherent limit then, which is to say 1
�6p

� 
, because in this regime the Rabi oscillations

are istantly damped and we �nd a simpler solution, which is more useful in comparison

with the experimental results, especially when in a regime of interacting particles.

We are going to use a notation similar to that of the excitation in order to stress the

symmetry between excitation and de-excitation; in this case we de�ne 
 = 1
�6p

.

Under the incoherent condition we neglet the coherences and we describe the evolution

of the populations, following a treatment anologue to [9] with a master equation for the
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reduced density matrix �, which has only diagonal entries:

@t� = �(�x��x � �)� 
j0ih0j� (6.2)

with � = �0
1

1+( �


)2

and �0 =

2



.

We can rewrite equation. 6.2 in the form: @t

 
�0

�1

!
=

 
��� 
 �

� ��

! 
�0

�1

!

which has solutions of the form �1(t) = �1e
�+t + �1e

��t (and a similar one for �0,

with the initial condition that is satis�ed imposing �i + �i = �i1) where �� = �� +
1
2(�
�

p
(
2 � 4�2)) are the eigenvalues of the last matrix. In the approximation 
 � �

(automatically satis�ed if 
 � 
) we can see that �+ � �
 and �� � ��.
Then �nally one �nds

@t�1 = �11 � e��t (6.3)

where we have neglected the contribution of the other exponential because it decays

with a rate faster than the minimum time interval we are interested in resolving in

the experiment and because �1
�1

� �


, and we put �1 = 1 in order to match the initial

condition. �11 is the only observable accessible with our experimental setup, and so

equation 6.3 constitutes our reference.

What happens when interactions come into play?

What we expect is that we can use a master equation similar to the one ([9]) which

describes the excitation process:

@t� = �k�k(�
k
x��

k
x � �)� 
�kj0ikh0jk� (6.4)

where since the index k runs on the atoms which are in the Rydberg state when de-

excitation begins and

�k = �0
1

1 + ( 1


(� � Vk)2

(6.5)

�k is the rate of de-excitation of the k atom, whith Vint its vdW potential. The evolution

of the internal states of the atoms is still correlated and impossible to solve analitically,

but a �rst di�erence between excitation and de-excitation is the number of atoms in-

volved, which can be � 1000 � 10000 in the �rst case and � 10 in the second one (in

typical cases of our experiments). This allows a speed-up of the numerical simulations

which we use in the course of this chapter for comparison with the experimental results

and for con�rmation of the hipothesis we present. Another important is the one-way

direction of possible transitions: in the excitation dynamics, the laser coupling can in-

duce both transitions j0i ! j1i and j1i ! j0i while the de-excitation dynamics induces
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only j1i ! j0i transitions in the approximation, valid in the incoherent regime, that an

atom which ends in the j0i state is istantly removed from the system.

6.2 Experimental Procedure

In order to perform de-excitation, some of the parameters of excitation have to be chosen

in a more narrow range than in other experiments. Here we explain why this is necessary.

Figure 6.1: Excitation and de-excitation scheme. When the 1012nm laser
switches frequency it couples the Rydberg state with the level 6p which decays fast

to the ground state (� 120ns), starting the de-excitation phase.

A de-excitation experiment is composed by two parts; the �rst one prepares the state

composed by some Rydberg excitations that are subject to de-excitation in the second

part.

As we have already explained in the technical chapter this requires a frequency switch

of the 1012nm laser that is performed with a change ("jump") of a RF sent to an AOM.

This implies that we have to choose a detuning of the 421nm laser (needed for the

excitation part) from the 6p state not higher than 60MHz, the frequency range where

the AOM can di�ract e�ciently (as we explained chapter 2): infact from the satisfaction

of the resonance condition for the excitation and the de-excitation we see that the jump

(from a resonant excitation to a resonant de-excitation) should be equal to �Blue. The

frequency jump and �Blue must have the same sign.

This �Blue is small if compared to that normally used in other experiments (400 �
1000MHz) which is to say that the probability of populating the 6p level during the
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excitation phase increases, given its 1
�2
Blue

dependence (given by the Bloch optical equa-

tion). The population of the intermediate state is not desirable because it can alter the

dynamics and cause electric �elds due to 6p atoms which are ionized after the absorption

of another 421 photon. This poses a limitations on the maximum 
Ryd that can be used.

Infact the transition 5s ! 70s is well described solely by a two-photon process when

�Blue � 
Ryd, and in that case we can still neglet the population of the intermediate

state. We lower 
Ryd acting on 
421 because we want the 1012nm laser to have available

the maximum power in the second part of the experiment. We furthermore verify with

a detection performed 1�s after an excitation in absence of the 1012nm laser that the

mean number of ions due to double-absorptions is less than 0:1.

After the excitation part, the experiment proceeds as follows.

The 421nm laser is switched o� and simultaneously the RF of the 1012nm laser is

switched, starting the de-excitation. After the 1012nm laser is switched o� too we wait

30�s (as explained in the chapter on the experimental apparatus) and then perform the

detection of the atoms which are still in the Rydberg state.

6.3 van der Waals spectroscopy

We want to use de-excitation to infer information about the distribution of energies of

the Rydberg atoms in a certain spatial con�guration.

From the interacting master equation we see that for small times the probability of de-

excitation of the k atom is proportional to �k = �0
1

1+( 1


(��Vk))2 (basically we consider

only the states directly coupled to �(0) i.e. the ones that di�er from it by a single

de-excitation). We expect that the probability of de-excitation with a certain detuning

� will be proportional to the number of atoms that have interaction energy close to �

within a width determined by the linewidth 
.

Then repeating the procedure with the same initial excitation scheme and varying the

frequency of the de-excitation we can reconstruct the distribution of the energies of the

initial con�guration. The underlying idea is that this procedure can give us information

about the spatial con�guration of the excitations (�gure 6.2).
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Figure 6.2: Actual system, Measurement and interpretation of the results.
In the Ursa-minor con�guration, the energy of each atom is given by the number of
nearest neighbours: �ve atoms have two nearest neighbours and have Vk = 2Vint; only
one atom has 3(1) nearest neighbours and has energy Vk = 3Vint(1Vint). Therefore if
we choose � = 2Vint we will de-excite an atom with a probability �ve times higher than
if we choose � = 3Vint or � = Vint. Note that energy distribution does not imply with

certainty a spatial distribution.

At higher de-excitation times distortion of the observed spectrum may set in because

of the growth of the non-linear terms in the exponential decay and also because de-

excitation itself is a process which alters the interactions by removing Rydberg atoms:

ideally, the spectrum of a determined con�guration is reconstructed with the maximum

accuracy when the probability of de-excitation of an atom is much less than 1 for every

� and with an average over a large amount of repetitions. Given the 
uctuations of

the system and of the experimental apparatus this limit is far from being satis�ed:

we are forced to choose a de-excitation time that is a compromise between accuracy

and visibility. We also recall the fact that we can't produce deterministically the same

initial state, the spectrum we are measuring must be intended as the average spectrum

generated by that particular excitation scheme.

6.3.1 De-excitation after a resonant excitation

As we have seen in the introductory chapter the initial phase of the dynamics on res-

onance is dominated by excitations which appear randomly in the interaction volume

at distances between them greater than Rb; after all the available blockade spheres are

occupied there is a sudden slowing of the dynamics that implies that the new excitations
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are produced with a decreased rate due to the interactions. We de�ne Nc the number of

excitations for which this sharp change of the slope happens. It can be estimated with

the ratio between the interaction volume and the volume of a blockade sphere multi-

plied by the detection e�ciency. We recall the fact that all the mean numbers the we

are reporting refer to the measured mean number.
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Figure 6.3: Number of excitations as a function of the excitation time. We
can estimate that the change in slope around Nc = 10 signales the crossover between
non-interacting and interacting excitations due to the saturation of the interaction

volume by blockade spheres. 1D con�guration, �x = 181�m, �y = 27:6�m

We �rst investigate de-excitation in the simplest case possible: we perform an excitation

on resonance with a mean number of excitations (chosen varying the excitation time)

that guarantees us that they are not interacting. We measure the number of atoms that

remain in the Rydberg level (the ones that have not been de-excited) as a function of

the de-excitation frequency
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Figure 6.4: De-excitation after a resonant excitation as a function of the
de-excitation frequency. 3D con�guration. �exc = 0, �x = 160�m, �y = 93�m.

The zero of the frequency axis is deduced from the relation �Ryd = �Blue + �1012nm. It

has an uncertainty � 
, beacuse that's the uncertainty with which we know �Blue.

We �t the curve with a lorentzian beacuse this is the behaviour expected if we look to

the de�nition of the rates �k (equation 6.5).
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Figure 6.4 con�rms that our picture of the excitation on resonance is correct: we can say

that the atoms are not interacting because they are resonant with a � = 0 transition. We

see that the linewidth 
 is compatible with the expectations, with an extra consideration.

Infact the measured linewidth is 
meas

2� = 2:6MHz against an expectation of 

2� =

1:3MHz. As we have explained earlier, there is a distortion due to the non-small de-

excitation time that in this case tends to broaden the measured linewidth.

We �nd that the o�set of the lorentzian curve corresponds to the mean number of the

excitation process.

Now we want to see what happens when we perform frequency scans starting from

di�erent initial numbers of the excitation on resonance, in particular when we reach the

interacting regime. We change the initial condition simply by changing the excitation

time.

-30 -20 -10 0 10 20 30
0

5

10

15

20

25

30

�

2�
(MHz)

hN
i

Figure 6.5: De-excitation as a function of the detuning for di�erent numbers
of excitations created on resonance. 1D con�guration, Nc = 15. Initial numbers
are 5 (blue), 10 (red),19(green) and 28 (purple). There is a small broadening of the
resonance peak and a small shift towards higher energies as the initial number increases

but the e�ect is clearly visible only analizing the lorentzian �t parameters.
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Figure 6.6: De-excitation as a function of the detuning for two di�erent
numbers of excitations created on resonance 3D con�guration, Nc � 20. Initial
number is 13 (Blue curve) and 30 (Red curve). With a higher number of initial ex-
citations the de-excitation e�ciency is lower because a fraction of atoms has non-zero

energy.

We analyze the frequency scans with lorentzian �ts. Even though a lorentzian model,

which is symmetric, may seem too simple to take into account interactions, which can

have in
uence only on the positive side of the spectrum, the examination of the param-

eters of the �ts gives important information on the interactions.
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Figure 6.7: Variation of the parameters of the lorentzian �ts of the de-
excitation frequency scans as a function of the number of excitations on
resonance The parameters of the lorentzian �ts of the curves of �g. 6.5. As the
number of initial excitations increases, there is a shift towards higher energies and a
broadening of the de-excitation resonance peak. Both e�ects are of entity smaller than


.

We found at �rst that the center of the lorentzian �ts shifts towards higher energies as

we increase the initial number while the width increases; these are a �rst sign of the

interactions.
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Both these e�ects are of entity smaller than 
, so they are marked by great relative

error.

They are nevertheless con�rmed by the simulations performed including both the exci-

tation and de-excitation dynamics for a 1D chain of atoms at distance Rb

30 (�gure 6.8).

Figure 6.8: 1D de-excitation simulation of di�erent initial numbers of Ryd-
berg atoms created on resonance. The curves are normalized to the initial numbers
which are 9 (red curve), 20 (blue curve), 24 (green curve). There is a qualitative agree-
ment with the experimental results: as the initial number of excitations increases, the
e�ciency of the de-excitation decreases due to the greater fraction of interacting atoms.

The most noticeable result is related to the e�ciency of the de-excitation (the ratio

between the fraction of atoms de-excited and the initial mean number) which decrease

sensibly with higher initial numbers. We can see it more clearly in �g. 6.6.

This result is con�rmed too by simulations which show also that as we increase the

initial number occurrence of higher energies start to happen, but they are spread over a

range much greater than 
.

In the experiment we can not reconstruct with accuracy the tail of the distribution be-

cause de-excitation involves a number of atoms smaller than the amount of 
uctuations.

Then this implies that the excitations can be subdivided into two populations, one

corresponding to the non-interacting atoms that can be de-excited on resonance and one

corresponding to the interacting atoms which have energies spread along a range much

greater than 
. The ratio between the number of interacting and the non-interacting

ones increases as the initial number of excitations increases.
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6.3.2 De-excitation after an o�-resonant excitation

Now we want to see what changes when studying de-excitation of Rydberg atoms created

with an excitation out of resonance. In this case we use only the 1D geometry beacuse

of the simpler expected values for the interaction potential Vk. Infact in a 1D geometry

each excitation can have, in a �rst approximation, only three de-excitation energies,

which correspond to the situations of none, one or two neighbours at distance rfac,

with energies respectively 0, �exc, 2�exc ( with �exc being the detuning of the excitation

frequency).

Next-nearest neighbours contribution can be neglected because they would be 26 times

smaller. This would mean that the interaction spectrum of a perfect chain would have

maximum occurrence of atoms at energy 2�exc and only two atoms at �exc. Note that

when we refer to an atom's energy we are referring to the interaction energy that it is

sharing with the others near to it and that is necessary to add to the detuning in order

to de-excite it. The total interaction energy is in fact E = 1
2�kVk.

We perform excitations without seed with �exc
2� � 10 � 30MHz. Since we know that

atomic motion due to the �nite temperature and to the van der Waals force can change

the interaction energy we keep the total time of the excitation plus de-excitation phase �
1�s which is near the lower limit of our apparatus in terms of time needed for completing

such a sequence.
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Figure 6.9: De-excitation after an o�-resonant excitation. �exc = 10MHz
(Blue points). The interactions shift the resonance curve by a factor close to �exc. For
comparison, a curve of de-excitation after a resonant excitation of equal mean number

is reported (Red Points).

If we compare the spectrum obtained with an excitation out of resonance with one

obtained with an excitation on resonance of similar initial mean number we �nd a single

broader peak shifted by � �exc (�gure 6.9).

The fact that there are no other peaks at resonance or at � = 2�exc, according to our

previous reasoning, would lead us to the conclusion that we are dealing with couples of

atoms at rfac, without non-interacting seeds or long chains.

We will discuss this conclusion with the results of the next section.

The broadening of the peak is probabaly due to the motion of the atoms, as we have

hipotized. A simple estimation of this e�ect which considers only the thermal motion

(which is dominant at these detunings [6]) is the shift undergone by an excited atom

which moves at thermal speed vth � 0:2�m=�s towards another excited atom at distance

rfac(� = 30MHz). If the time of the experiment is � = 1�s its �nal energy shift would

be � 6 �exc
rfac

vth� = 9MHz.

If we add a waiting time between the excitation and the de-excitation phase what we

expect is an expansion of the Rydberg aggregate, to which both the thermal motion and

the vdW repulsion concur, and a resulting decrease of the interaction energy due to the

increased distances between particles.
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Figure 6.10: Rydberg atoms expansion between an o�-resonant excitation
and the de-excitation. Waiting time between excitation and de-excitation is 0:5�s
(Blue points) and 10�s (Red points). During the waiting time the Rydberg aggregate
expands due to thermal motion and vdW repulsion and its interaction energy decreases.

�exc = 9MHz

We see that, in this case, the spectrum is shifted towards lower energies (�gure. 6.10).

This proves that de-excitation is an extremely versatile technique, because it would allow

also to record the time evolution of the interaction energies due to the atomic motion.

6.4 A new dynamics

As we have already evidenced, de-excitation is a destructive measure of the interaction

spectrum: when an atom is brought to the ground state, the potential felt by the others

changes. We want to see how this dynamics evolves to �nd trace of these correlations.

Again we make use of 1D simulations.

The experiment is performed as before, we simply change the de-excitation time while

keeping �xed the laser frequency on resonance with the de-excitation transition that we

determine with a frequency scan.

6.4.1 De-excitation dynamics after an excitation on resonance

As before, we verify the simplest case �rst: we excite atoms on resonance in a number

which guarantees us that they are not interacting and we measure the number of atoms
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that remain after a variable de-excitation time on resonance with the de-excitation

transition (� = 0).
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Figure 6.11: De-excitation as a function of the de-excitation time As predicted
by the theory, in absence of interactions, de-excitation is exponential.

As expected, the decay is well �tted by an exponential curve. The o�set is due to the

black body radiation-induced transfer to other Rydberg states which are measured be-

cause of our non-selective detection. The decay rate is smaller by a factor � 4�10 than

the value of � estimated knowing the power of the laser, the 6p lifetime, the laser waist

and the dipole matrix elements and evaluating the gaussian beam power pro�le at the

peak. Then a non-perfect alignment can easily produce such a discrepancy.

Again, as before, we repeat the same experiment starting from di�erent initial numbers

created on resonance and in particular in the interacting regime.
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Figure 6.12: Simulation of de-excitation as a function of de-excitation time
of interacting excitations At higher initial numbers we expect that the atoms that
start interacting have a slower de-excitation rate and infact the �nal rate of the curve
at higher initial number is lower than the rate of the curve that starts from a lower

initial number.
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Figure 6.13: De-excitation as a function of de-excitation time of interacting
excitations 1D con�guration. The green curve which starts from a higher initial
number (15.6) has a sharp slope change at the crossover between the fast de-excitation
of non-interacting atoms and the slow de-excitation of interacting atoms. The blue curve
has an initial number of excitations of 6, and has an almost constant de-excitation rate.
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What we see (�g. 6.13), and it is con�rmed by simulations (see �g. 6.12), is that hNi
seems to decay with a faster rate in the �rst part of the dynamics, and with a slower

one in the second. We use semilogarithmic graphs in order to give similar weights to

the two regimes and to evidence the deviation from a linear curve that we would see in

the case of a perfecly exponential decay; we want to stress though that to associate the

slope of the curve in a certain point to an actual rate would be improper because we

are observing an average over di�erent rates of di�erent energy classes. We associate

these two part of the dynamics with the de-excitation respectively of the non-interacting

atoms, which are rapidly de-excited, and of the interacting ones that feel a smaller �

due to the interactions. This subdivision into two populations of the atoms has already

been seen in the spectroscopy of resonant excitations: as the initial number is increased,

an increasing fraction of atoms ends in the tail of the distribution.

This can be more clearly seen in a simulation of de-excitation starting from an almost

ordered state. The initial con�guration is a 1D con�guration of N0 excitations spaced

by a distance a plus n < N0 random excitations between, at a distance a
2 from the

neighbours.

a is such that: Vint(r; r � a) < 
, Vint(r; r � 1
2a) > 
 so that the atoms in the regular

chain do not interact with each other, while the random excitations and their neighbours

interact. The simulated de-excitation dynamics from such states show that the dynamics

slows when hNi � 3n which con�rms our interpretation.

Figure 6.14: Simulation of de-excitation of ordered states. The initial state
is a chain of N Rydberg atoms with n Rydberg atoms in random positions between
them as a function of the de-excitation time. N0 = 100; n = 0(blue); n = 5(green); n =
10(red); n = 20(lightblue). The number of atoms that are slowly de-excited is the

number of interacting atoms due to the intersitial excitations.
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These results show that the experimental hNi where the change of slope occours can be

used as a measure of the numbers of the interacting atoms in the initial con�guration

(and by di�erence, of the number of non-interacting atoms).

Moreover, this imply that at that particular time of the de-excitation dynamics we have

created a state formed, with high probability, by interacting excitations.

The two-populations interpretation becomes too simplistic when the excitation is per-

formed with the 3D geometry, where each excitation has multiple interaction possibili-

ties, in terms of spatial degrees of freedom and number of nearest neighbours.

In this case we do not see a sharp but rather a continuos change of the slope of the mean

number of atoms which remain in the Rydberg level as a function of the de-excitation

time.

Figure 6.15: De-excitation after a resonant excitation as a function of the
de-excitation time in a 3D geometry. The 3D geometry o�ers multiple possibilities
of interactions and hence eliminates the sharp division between interacting and non-
interacting atoms, so there is a continuos change of the apparent de-excitation rate.

These results lead us to some considerations about the validity of mean �eld approx-

imations for this kind of systems. Infact the dynamics of Rydberg excitation is often

integrated numerically by replacing the interaction strength of the k atom, Vk, with an

average interaction strength (as can be found in [9]). We have found instead that the

distribution of the interaction strengths can have large 
uctuations around the mean

value, both in the case where we have two atomic populations at zero and non-zero

energy (1D case) and in the case where more interaction possibilities are present (3D

case).
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6.4.2 De-excitation dynamics out of resonance
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Figure 6.16: Simulation of a detuned de-excitation of an ordered chain.
The excitations are initially spaced by rfac(30MHz). De-excitation is performed with
�
2�

= 15MHz (Blue curve) and �
2�

= 30MHz (Red curve). The �rst de-excitation stops
when no atoms have two nearest neighbours, the second has always the possibility of

resonant de-excitation at the ends of the chain

We have not yet realized an experiment in this context. The main di�culty is the fact

that we can't locate a precise resonance at 2�exc, which is to say that de-excitation is

extremely non-e�cient in this regime. In light of the simulation of �g. 6.16 we can

see that after a certain point the de-excitation with � = �exc becomes faster while the

other (at � = 2�exc) is blocked. This can be geometrycally explained by seeing that the

de-excitation at � = 2�exc concerns only atoms with two nearest neighbours excited, and

it blocks when the chain has holes separated by an atom or at least two, therefore the

fast de-excitation of a chain concerns only 33 � 50% of the initial number. Instead, a

de-excitation at � = �exc, after the de-excitation of the �rst atom, is again resonant with

the new head of the chain and ideally it stops only when there is only one atom left.

The experimental 
uctuations may shorten even more this initial regime where the

� = 2�exc de-excitation is more e�cient and that could be the explanation of the absence

of the peak at � = 2�exc (�gure 6.9).
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6.5 Conclusions

Here we have just demonstrated some of the many possibilities that de-excitations o�ers

in the context of interacting Rydberg atoms, even though it could be generalized to

any system composed by two-level elements that interact with each other that can be

brought into a non-interacting state.

We provided a new method to assess the distribution of the interaction energy between

Rydberg atoms, and we have shown how this can be used to gain information also

on their spatial con�guration. We have also have highligthed what are the intrinsic

limitations of this procedure.

Moreover, we have shown that de-excitation dynamics is a highly-correlated process

just as excitation dynamics and therefore allows a specular point of view on the same

complex, many-body problem.

We have shown how de-excitation dynamics too gives information about the initial state

in terms of energy and space, but we also introduced the possibility to use it as a way

to manipulate the system itself by removing selectively a class of atoms that have a

particular energy.
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Conclusions

In this thesis we have tried to investigate the dynamics of a complex many body system

with the aid of a dissipative dynamics. In particular, this study was applied to the

laser-driven excitation dynamics of a cold cloud of interacting Rydberg atoms and the

dissipative dynamics was provided by a coupling with a fast-decaying level, hence the

term de-excitation dynamics.

We have found that de-excitation can reveal a lot of information about a system prepared

with the excitation dynamics; this information is related to the interactions between

Rydberg atoms and their spatial arrangement. Also, this extra information was gained

without the need for additional observables such as the positions of the excitations.

The work presented here only touches the surface of what can be done using de-excitation

as a tool in cold Rydberg atom physics. Other experiments are needed to answer the

questions that have remained open, and to explore the possibilities o�ered by the de-

excitation applied to other aspects of strongly correlated Rydberg excitations.

The general scheme of the de-excitation, however, can be extended to any system of

interacting elements that can be coupled to a fast-decaying level, as we have mentioned.

We suggest that it could be used also in a quantum simulation perspective [8], i.e. to

simulate a dissipative dynamics with the advantage that the dissipation rate can be

easily tuned acting on the strength of the coupling with the fast-decaying level.

We conclude with a �nal remark on the idea we presented in the preface.

We think that that the success of de-excitation as a tool for gaining information about

the excitation dynamics is due to the fact that the dynamics it induces is simpler: by

this we mean that has fewer degrees of freedom, and that it is described by simpler

equations. We hope that this concept could be generalized and will �nd applications
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also in di�erent contexts of many-body physics.

jendi
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