

Laser cooled cesium atoms as a focused ion beam source

Matthieu Viteau 1st February 2013

Outline

- Introduction to Focused Ion Beam (FIB)
- Why cold atoms ?
- Some cold atoms sources
- Our cesium source
- Coulomb effects
- Conclusion

Focused Ions Beam (FIB) applications

Liquid Metal Ion Source (LMIS)

Key parameters for a source

(Liouville's theorem)

New idea

The idea is to obtain a large ion source without divergence to increase the brightness

Cold atoms

Advantages

Monokinetic beam Reduce chromatic aberrations

Ion beam with cold atoms

Our source

• <u>Goals</u>:

- Continues and high courant source (~10 nA)
- High brightness (> LMIS = 10⁶ A.m⁻².sr⁻¹.V⁻¹)
- > Low energy dispersion (<0.5 eV LMIS = 5 eV)

Our setup:

- Atomic cesium beam with high flux
- Laser cooling of the atoms
- Rydberg ionisation in electric field

Recirculating oven

Recirculating oven

Compression

Experimental setup

Characterisation and divergence

alternative to photoionisation

Rydberg excitation and field ionisation

Rydberg excitation and field ionisation

Propagation axe z

Choice of the parameters

Excitation-Ionisation module

Setup

Coulomb effects and propagation of the beam

Conclusions

- Realisation of a continuous ionic beam from cold atoms
 - Recirculating oven
 - Laser collimation
 - Excitation/Ionisation
- \circ To be done
 - Compression of the atomic beam
 - New oven without wick
 - Improve the ions signal
 - Coupling with FIB optics
- \circ theory
 - Rydberg ionisation in electric field
 - Coulomb effects
- Other possibilities
 - Electron beam
 - Pulse source
 - ..

- ✓ flux de 10¹³ at/s
- divergence < 0.3 mrad
 - first ions

Acknowledgement

- Leïla Kime (OP/LAC)
- Bernard Rasser (OP)
- Daniel Comparat (LAC)
- Pierre Pillet (LAC)
- Andrea Fioretti (Pisa)

Collaboration

• Francesco Fuso (Pisa)

