Dynamics of superfluid ⁶Li gases through a thin barrier

Giacomo Roati

INO-CNR & LENS, University of Florence, Italy

Area della ricerca CNR

14th December 2015

INO-CNR Istituto Nazionale di Ottica

INTERNATIONAL YEAR OF LIGHT 2015

OUTLINE

- I. General motivations.
- 2. BEC-BCS crossover: strongly-correlated Fermi gases
- 3. Our experiments: tunneling of (strongly-correlated) fermions
- 4. Dynamics of superfluid Fermi gases across the BEC-BCS crossover: from coherent to dissipative dynamics

- 5. Spin diffusion across the BEC-BCS crossover: work in progress.
- 6. Conclusions

R. Feynman, International Journal of Theoretical Physics, 21, (1982)

Real and new materials: technological impact

Quantum simulation: theory Quantum simulation: experiments

Simulating the electronic properties of materials long before they can be physically realised

THE ESSENTIAL TOOL: light !!!

Imaging

Trapping

Cooling

THE ESSENTIAL TOOL: light !!!

Engineering artificial "crystals" made by (laser) light

BEC-BCS crossover: strongly-correlated (superfluid) fermions

Superfluidity is one of the most intriguing phenomenon in physics.

 $\Delta = |\Delta| e^{i\varphi}$

Two paradigmatic "in principle disconnected" limits...

(Bosons)

Bose-Einstein condensation

Helium 4 Atomic gases Polaritons Light Bardeen-Schrieffer-Cooper pairing

Helium 3 Atomic gases Superconductors Nuclear matter

M. Randeria, Ultracold Fermi gases: pre-pairing for condensation, Nat. Phys. 6, 561 (2010)

(Bosons)

System	T_c	T_F	T_c/T_F
Metallic lithium at ambient pressure [110] Metallic superconductors (typical)	0.4 mK 10 K	55 000 K 100 000 K	10 ⁻⁸ 10 ⁻⁴
³ He	2.6 mK	5 K	5×10^{-4}
MgB_2	39 K	6 000 K	10^{-2}
High- T_c superconductors	100 K	5000 K	2×10^{-2}
Neutron stars	10 ¹⁰ K	10 ¹¹ K	10 ⁻¹
Strongly interacting atomic Fermi gases	170 nK	1 μΚ	0.17

The coldest (nK) fermions in the universe but million times thinner (1013 cm-3) than air

M. Zwierlein in Novel superfluids Vol. 2, K.H. Bennemann, J. B. Ketterson, Oxford Science Publication (2015)

How ?

How ?

Proceedings of the International School of Physics "Enrico Fermi", Course CLXIV, Varenna, edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS Press, Amsterdam)

SCENARIO #I: fermionic pairs (coherent) tunneling

The Josephson effect (I)

B. D. Josephson, Phys. Lett. 1, 251 (1962)

Pristine quantum phenomenon:

Pinning down superfluidity and phase-coherence in one measurement

He (Packard), BCS and High-Tc SC, Polariton (J.Bloch), atomic BECs (Inguscio, Oberthaler, Steinhauer,)...

The Josephson effect (II)

B. D. Josephson, Phys. Lett. 1, 251 (1962)

 ϕ , N: conjugate quantum variables:

Essential parameters

P. W. Anderson in Lectures on the Many-body Problems, E.R. Caianiello (Eds.)-Elsevier Science (1964)

WHY Josephson dynamics in crossover SF?

Never studied...

Josephson effect: tunneling across the insulating barrier:

$E_J \sim \Delta_L \Delta_R / (\Delta_L + \Delta_R) \times \cos(\varphi_L - \varphi_R)$

- Distinguishing the composite fermionic nature of the **condensed** tunnelling particles
- Probing the excitation spectra of the superfluid/superconductor

Ideal probe of the peculiar-nature of crossover superfluid

An optical thin barrier (light) & superfluid atomic Fermi gases:

"Synthetic" Josephson junctions

 $\Delta = |\Delta| e^{i\phi}$

phase coherence (ϕ) \Leftrightarrow order parameter (Δ)

Our all-optical scheme

A. Burchianti et al. PRA 90, 043408 (2014)

M. Ku et al. Science 335, 563 (2012).

Imaging resolution at 670 nm: 1.4 μm

The observables

The relevant energy scales

$$\omega_J = \frac{1}{\hbar} \sqrt{E_C E_J}$$

 $E_C = Charging energy: localization energy "against" tunneling$

 $E_J > k_B T$

 $E_I > E_C$

 $E_J = J$ osephson coupling energy: connection superfluids phases

Phase coherence wins against thermal fluctuations

Phase coherence exists between the 2 superfluids

 $z_0=3\%$ & $V_0/E_F=1.2$

mBEC: bosonic superfluid

Conjugate dynamics (shift $\pi/2$) of $z \sim N_L - N_R$ and $\phi = \phi_L - \phi_R$

G.Valtolina et al., Science in press

 $K = K(\mu, V_0, w)$

G.Valtolina et al., Science in press

G.Valtolina et al., Science in press

D. Husmann et al. arXiv:1508.00578 (2015).

Similar to soliton vortices observed in fermionic superfluids via phase-imprinting and in BEC via KZ mechanism.

T. Yefsah, et al. Nature **499**, 426, (2013). G. Lamporesi et al. Nature Physics 9, 656, (2013).

G.Valtolina et al., Science in press

SCENARIO #2: spin diffusion with resonant interactions

SCENARIO #2: spin diffusion with resonant interactions

to a paramagnetic state?

WORK IN PROGRESS

Our initial state: an "artificial" ferromagnet

Short-range *repulsion*: kinetic vs interaction energies:

I. minimal model for magnetism of delocalised fermions (Stoner '33)

G.-B. Jo et al, Science, 325, 1521 (2009)

Short-range *interactions*: kinetic vs interaction energies:

2. textbook spintronic experiments with controllable spins

Sample preparation

$T/T_F < 0.1$

 $T/T_F < 0.1$

 $1/k_F a \sim 0$

Conclusions and Perspectives (I)

- I. Thin optical barrier on superfluids (& degenerate Fermi gases) across the BEC-BCS crossover: interesting platform to study superfluidity and spin diffusion...
- 2. Coherent and dissipative dynamics: bosonic SF and fermionic SF
- 3. Spin-diffusion: anomalous (relevant) behavior?
- 4. Role of vortices in quenching coherent dynamics.
- 5. Tunneling of... vortices through the barrier: interesting or simply foolish ?
- 6. Ferromagnetic state (Stoner model): metastability (polaron physics) ??

How to reach the 2D regime (Florence approach)?

 $\hbar\omega_{\mathbf{z}} >> k_B T, E_F$

Holographic phase-plate:TEM₀₁ laser mode: single layer.

A. Amico, Master Thesis (2012)

Post Doc

A. Burchianti

F. Scazza

PhD

11

G. Roati (PI)

A.Amico

G.Valtolina

E. Neri

M. Inguscio

M. Zaccanti

A. Smerzi group theory

PhD. Proukakis

IFUNAM

Esslinger group

K. Xhani

J. A. Seman

A. Morales