Diamond color centers for quantum technologies

Nicole Fabbri

Istituto Nazionale di Ottica - CNR LENS - University of Florence fabbri@lens.unifi.it

> Area della ricerca CNR, Pisa January 25, 2017

Diploma students (UniFi): N. Fiaschi L. Zolfanelli F. Lucera

quantuminformation processing
communication
sensing

Color centers in diamond

- isolated defects (artificial atoms)
 - robust optical interface
 - localized spin with long coherence times

Color centers in diamond

Spectral map of diamond color centers

Spin manipulation of single centers demonstrated for NV, SiV, GeV

NV center

Isolated defect in diamond with electronic spin S = 1

NV center

Isolated defect in diamond with electronic spin S = 1

- optical initialization and read-out
- spin manipulation with magnetic resonance tools
- long coherence time @ room temp. (ms)

Single-spin NV magnetometer

Magnetic-field sensing by monitoring Zeeman frequency shift

$$H_Z \sim \gamma_e \mathbf{S} \cdot \mathbf{B}$$

Idiamond magnetometer offers an excellent combination of sensitivity and spatial resolution

also, biocompatible and working at room temperature

Detection via Ramsey-type experiment

$$H_Z \sim \gamma_e \mathbf{S} \cdot \mathbf{B}$$

For improving sensitivity

Longer interrogation times (control schemes)

$$\Delta B = \frac{1}{\gamma T \sqrt{n}} \qquad \qquad \boxed{|0\rangle + |1\rangle} - \cancel{\varphi} - \cancel{\varphi} - \cancel{\varphi}$$

Entangled states

$$\Delta B = \frac{1}{\gamma n \sqrt{\tau T}}$$

The NV environment can be a resource

The closest nuclear spins can be used as ancillary qubits of the NV electronic spin

(hyperfine interaction)

Cappellaro et al., Phys. Rev. Lett. 102, 210502 (2009)

The NV-14N two-spin system

Requirements:

- initialize the nuclear spin in a highly polarized (pure) state
- precise knowledge of the interaction

To obtain Nuclear spin polarization

- · optical initialization of the electronic spin
- transverse hyperfine coupling mixes electronic and nuclear spin in the excited state

 $H_{\perp}^{es} = C_{\perp}(S_x I_x + S_y I_y)$

energy-conserving exchange of polarization by spin flip-flop:

final state $|0, +1\rangle_g$

Problem: no exp. meas. of C_{\perp} due to short excited state lifetime (~ 10ns)

Nuclear spin polarization: dynamical measurements

F. Poggiali, P. Cappellaro, N. Fabbri, arXiv:1612.04783

Nuclear spin polarization: dynamical measurements

F. Poggiali, P. Cappellaro, N. Fabbri, arXiv:1612.04783

simulate the time evolution of the 2-spin system with Liouville eq.

F. Poggiali, P. Cappellaro, N. Fabbri, arXiv:1612.04783

The timescale of the polarization in $|0, +1\rangle_g$ crucially depends on the excited-state transverse hyperfine interaction C_{\perp}

F. Poggiali, P. Cappellaro, N. Fabbri, arXiv:1612.04783

The timescale of the polarization in $|0, +1\rangle_g$ crucially depends on the excited-state transverse hyperfine interaction C_{\perp}

F. Poggiali, P. Cappellaro, N. Fabbri, arXiv:1612.04783

SiV center

- Inversion symmetric potential:
 - narrow line @ room temp. (1 nm)
 - 70% brunching ratio for ZPL
 - weak coupling with host matrix
 - low inhomogeneous broadening (1 GHz)
 - high photostability
- Single SiV centers both in nDiamonds and in bulk
- Short excited-state lifetime
- 150 MHz ZPL @ cryo temp.

good candidate as stable single-photon sources for QC

A. Sipahigil et al., PRL 113, 113602 (2014)

Photophysics of SiV center: Temperature effect

S. Lagomarsino, F. Gorelli, M. Santoro, N. F. et al., AIP ADVANCES 5, 127117 (2015)

Thanks for your attention!