Novel quantum simulation with ultracold two-electron fermions

INO-CNR, Pisa June 6th 2016

Introduction

Observation of interorbital spin-exchange

Tuning interactions via an Orbital resonance

Chiral edge states in synthetic dimensions

Outlook and summary

Introduction

Observation of interorbital spin-exchange

Tuning interactions via an Orbital resonance

Chiral edge states in synthetic dimensions

Outlook and summary

Ultracold Atoms represent an ideal testbench for many fundamental physical models with **unprecendent control at the quantum level**

Alkaline-earth-like atoms

Unique properties deliver new opportunities in several fields:

- «Extended» theories (e.g multi-spin Luttinger liquid)

G. Pagano et al. Nature Phys. **10**, 198–201 (2014)

- Exploit an «extra» degree of freedom: ORBITALS Kondo physics, orbital magnetism, tunability of interactions

Ytterbium

http://periodictable.com

Seven stable natural isotopes			
¹⁶⁸ Yb	0.13%	I=0	boson
¹⁷⁰ Yb	3.04%	I=0	boson
¹⁷¹ Yb	14.28%	I=1/2	fermion
¹⁷² Yb	21.83%	I=0	boson
¹⁷³ Yb	16.13%	I=5/2	fermion
¹⁷⁴ Yb	31.83%	I=0	boson
¹⁷⁶ Yb	12.76%	I=0	boson

¹⁷³Yb Fermi gas

$$\label{eq:tau} \begin{split} T &\sim 0.1 \ T_F = 10 \ nK \\ N &= 10^4 \ atoms/spin \end{split}$$

Yb (alkaline-earth-like) structure

Fermionic isotopes of Yb in the ground state ¹**S**₀:

Purely nuclear spin (J=0)

M. Cazalilla and A. M. Rey, Rep. Prog. Phys. **77**, 124401 (2014).

SU(N) symmetry

- Interaction strengths between different nuclear spin states are the same

- No spin-changing collisions:

Spin Detection

¹⁷³Yb Fermi gases in an arbitrary number of equally-populated components:

Long-lived electronic state

All isotopes of Yb: Metastable state ${}^{3}P_{0}$ (~ 10 s lifetime for 173)

Long Lived Electronic Orbital

Note: SU(N) symmetry also holds for ${}^{3}P_{0}$ (J=0)!!

Two internal degrees of freedom with long life-(coherence-)times

Nuclear spin / SU(N)

Electronic orbital

Two internal degrees of freedom with long life-(coherence-)times

Nuclear spin / SU(N)

Electronic orbital

M. Mancini et al., Science 349, 6255 (2015)

Two internal degrees of freedom with long life-(coherence-)times

Two internal degrees of freedom with long life-(coherence-)times

Nuclear spin / SU(N)

Electronic orbital

Introduction

Observation of interorbital spin-exchange G. Cappellini et al., PRL <u>113</u>, 120402 (2014) **S** Physics

Tuning interactions via an Orbital resonance

Chiral edge states in synthetic dimensions

Outlook and summary

Orbital manipulation

Optical Clock Technology for orbital manipulation

G. Cappellini, et al., Rev. Sci. Instrum. **86**, 073111 (2015)

Clock technology 2.0

650km-long optical frequency link:

D. Calonico et al., Appl. Phys. B 117, 979 (2014)

Beyond GPS long-term stability

Absolute frequency of ¹⁷³Yb clock transition $f = 518\ 294\ 576\ 845\ 268\ (10)\ Hz$ (10⁻¹⁴ in 10⁴ seconds) Dissemination of absolute time reference **BEYOND GPS LIMIT**

C. Clivati et al., Opt. Express 24, 11865 (2016)

Interorbital Spin-Exchange

Two fermions (g+e) in a trap A. Gorshkov et al., Nat. Phys. 6, 289 (2010)

V_{ex} can drive dynamics in the system!

How to induce and detect such dynamics?

Biffesyentreetizatiog leftettative or the tikelo etgeenstates:

EXCHANGE INTERACTION

Interorbital Spin-Exchange

Let's add a magnetic field B: Mixing between the two channels

$$|eg_L\rangle = \alpha |eg^+\rangle + \beta |eg^-\rangle$$
 $\alpha^{2} = \beta^{2} = 1/2$ @ large B

PREPARATION

 π -pulse +B field quench + free evolution

Ground-state magnetization: Spectrum of the 578nm clock transition $| \log \log (p) t |_{a} = \frac{1}{2} t t \cos \beta \cos \left(\frac{2V_{ex}}{\hbar} t \right)$

Direct observation of long-lived interorbital spin-exchange oscillations

See also F. Scazza et al., Nat. Phys. **10**, 779 (2014)

Interorbital Spin-Exchange

Very large spin-exchange energy $!!! V_{ex} >> k_BT$ (<h x 1 kHz)

Strong repulsion in the $|eg^+\rangle$ state, close to the lattice band separation

Beyond standard Hubbard treatment of interactions ("fermionization" of spatial wavefunction)

T. Busch et al., Found. Phys. 28, 549 (1998)

$$a_{eg}^{-} = 220 a_0$$

 $a_{eg}^{+} = 3300 a_0$

Introduction

Observation of interorbital spin-exchange

Tuning interactions via an Orbital resonance G. Pagano et al., PRL <u>115</u>, 265301 (2015) SPHYSTCS

Chiral edge states in synthetic dimensions

Outlook and summary

Tunability of interactions: Feshbach resonances

PROBLEM...

In G.S. Alkaline-Earth-Like atoms the Hyperfine interaction is absent! No «magnetic» Feshbach coupling

Tunability of interorbital interactions

Related work by M. Höfer et al., Phys. Rev. Lett. (same issue)

Orbital Resonance Mechanism

Scattering potential (in the OC and CC basis)

$$\hat{V} = \hat{V}_d(|o\rangle \langle o| + |c\rangle \langle c|) + \hat{V}_{ex}(|c\rangle \langle o| + |o\rangle \langle c|)$$

$$a_d = \frac{a_{eg}^+ + a_{eg}^-}{2} \qquad a_{ex} = \frac{a_{eg}^+ - a_{eg}^-}{2}$$

$$a_{eg}^+ = 3300 a_0$$

1) Strong scattering unbalance implies strong coupling between OC and CC

Orbital Resonance Mechanism

2) Large background CC scattering length lowers resonant B field around a few tens of Gauss

Not true for other alkali-earth(-like) atoms e.g. Sr (which has a deep bound state)

Strongly interacting orbital gas

TOF expansion @ finite B (first 5 ms)

Aspect Ratio of the orbital gas

Aspect Ratio (AR) Rx/Ry gives information on interaction energy through release energy (TOF) K. M. O'Hara et al., Science **298**, 2179 (2002).

NONINTERACTING: Rx/Ry \rightarrow 1

INVERSION OF ASPECT RATIO

STRONGLY INTERACTING FERMI GAS IN THE HYDRODINAMIC REGIME

Observation of OrbFR

G. Pagano et al., PRL 115, 265301 (2015)

AR anisotropy is used to characterize the scattering strength as a function of **B**

C. A. Regal and D. S. Jin, PRL 90, 230404 (2003)

AR anisotropy resonance in open channel

No resonance observed in closed channel

Scaling law of resonance centers G. Pagano et al., PRL 115, 265301 (2015)

COLLAPSE OF DATASETS ONTO A UNIVERSAL CURVE!

Lifetime of a strongly interacting orbital gas

Rx/Ry and Atom Losses as a function of hold times

- Long lifetimes $\tau \simeq 380 \text{ ms}$
- Single exponential decay

Main contribution from inelastic e-g collisions

- No shape excitations
- No Spin exchange is observed

(3D) $\Delta \mu B \gg V_{\rm ex}$

G. Pagano et al., PRL 115, 265301 (2015)

Lifetime of a strongly interacting orbital gas

Atom number decay ACROSS THE RESONANCE

Promising tool for Many-Body studies of Orbital interacting Gases

G. Pagano et al., PRL 115, 265301 (2015)

Introduction

Observation of interorbital spin-exchange

Tuning interactions via an Orbital resonance

Chiral edge states in synthetic dimensions

M. Mancini et al., Science 349, 1510 (2015)

Outlook and summary

Simulating an "extra dimension"

Multicomponent two-electron ¹⁷³Yb fermions (nuclear spin 5/2):

Simulating an "extra dimension"

Raman transitions coupling coherently different nuclear spin states:

Simulating an "extra dimension"

Analogous to coherent tunnelling coupling in an optical lattice:

Use internal DOF in order to «simulate» EXTRA DIMENSIONAL lattice sites

Boada et al., PRL 108, 133001 (2012)

An atomic Hall ribbon

Investigating topological states of matter in a hybrid lattice

proposed: A. Celi et al., PRL 112, 043001 (2014)

realized: M. Mancini et al., Science **349**, 1510 (2015) B. K. Stuhl et al., Science **349**, 1514 (2015)

An atomic Hall ribbon

An atomic Hall ribbon

Spin-selective imaging

Bulk and edge states

Harper-Hofstadter model: a charged particle in a square lattice + magnetic field

$$H = -t \sum_{j,m} (c_{j,m}^{\dagger} c_{j+1,m} + h.c.) - \Omega \sum_{j,m} (e^{i\varphi j} c_{j,m}^{\dagger} c_{j,m+1} + h.c.)$$

Harper, Proc. Phys. Soc. A **68**, 874 (1955) Hofstadter, PRB **14**, 2239 (1976)

Edge states

Edge states are a hallmark of topological states of matter

Quantum Hall effect

Chiral spin liquids

Topological insulators

Quantum technology

N. Y. Yao, Nat. Comm. 4, 1585 (2013)

3 - leg fermionic ladder

M. Mancini et al., Science 349, 1510 (2015)

Adiabatic loading of a 3-leg ladder

Lattice filling: ~0.75 atoms / real site

M. Mancini et al., Science **349**, 1510 (2015)

3 - leg fermionic ladder

M. Mancini et al., Science 349, 1510 (2015)

Evolution of a wavepacket prepared on the edge:

30x20 lattice

Evolution of a wavepacket prepared on the edge:

30x20 lattice

Edge-truncated chiral cyclotron dynamics "Skipping" orbits

M. Mancini et al., Science **349**, 1510 (2015)

Initial state with <k>=0 on the m=-5/2 leg

Quenched dynamics after activation of synthetic tunneling

M. Mancini et al., Science 349, 1510 (2015)

Initial state with <k>=0 on the m=-5/2 leg

Quenched dynamics after activation of synthetic tunneling

electrons can move along edge (conducting)

A hallmark of quantum Hall physics: Visualization of edge-cyclotron orbits electrons localized in orbits (insulating) +3/2 E -1/2 Theory by M. Dalmonte, P. Zoller, M. Rider (Innsbruck) Related work at JQI/NIST: -5/2 0.05 0.1 0.15 0.2 0.25 0 B. K. Stuhl et al., Science **349**, 1514 (2015) $\langle x \rangle$

Introduction

Observation of interorbital spin-exchange

Tuning interactions via an Orbital resonance

Chiral edge states in synthetic dimensions

Outlook and summary

Outlook

- SU(N) symmetry + orbital manipulation + lattices:

unique platform for exploring fundamental multi-band magnetic models

From A.M. Rey group

- Interorbital interaction tunability:

explore the BEC/BCS crossover in fermions with orbital degree of freedom

Outlook

Synthetic dimensions: a <u>brand new concept</u> for atomic physics experiments

- Interactions + gauge fields

New states, fractional helical liquids

S. Barbarino et al., Nat. Comm. **6**, 8134 (2015) J. C. Budich et al., PRB **92**, 245121 (2015)

- Engineering topology

Open and periodic boundary conditions

Rings, cylinders, tori, Moebius strips...

O. Boada et al., NJP 17, 045007 (2015)

Outlook

- State-dependant lattices + clock laser + synthetic PBC

Bulk physics: Hofstadter butterfly

Credits

Lorenzo Livi G. C. Jacopo Catani Massimo Inguscio Leonardo Fallani

Marco Mancini Guido Pagano Carlo Sias

Exp. collaboration with INRIM (Torino): C. Clivati, M. Pizzocaro, D. Calonico, F. Levi

Theory collaboration with Innsbruck: M. Rider, M. Dalmonte, P. Zoller

Funding from ERC (CoG 2016), EU, MIUR, INFN

Summary

Optical fiber absolute frequency dissemination

C. Clivati et al., Opt. Express 24, 11865 (2016)

Strongly interacting 1D SU(N) fermions

G. Pagano et al., Nature Phys. 10, 198 (2014)