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Introduction

Since their first appearance in , lasers have boosted up studies in many

areas due to the high fields provided, opening the possibility to investigate

a wide range of phenomena. During these years there have been huge

improvements in laser pulse generation, most notably the recent Nobel

prize-winning amplification technique of Chirped Pulse Amplification

(CPA), leading to nowadays systems capable of pulse duration of the order

of few femtoseconds and with peak intensity, when focused, exceeding

1020 W/cm2 thus concerning the ultra-relativistic regime.

In  Tajima and Dawson [1] proposed the use of a single high-

intensity ultrashort laser pulse to excite longitudinal waves in plasmas via

the ponderomotive force. Such waves, exploited as accelerating structure,

can sustain fields of the order of 100 GV/m, way more than conventional

accelerators and without the breakdown constraint. This model, namely

Laser WakeField Acceleration (LWFA), has proven his validity, already

reaching accelerated electron beam energy up to 8 GeV [2]. However the

poor quality of these accelerated bunches limits the applications of laser-

plasma accelerators. One of the proposed solution is to decouple the

wakefield generation and the injection mechanism.

Among the proposed models, the REsonant Multi-Pulse Ionization

injection (REMPI) scheme [3] aims to obtain electron bunches with low

emittance (0.08 mmmrad) and low energy spread (0.65 %). In this model

the wake is excited by a train of resonant low-energy pulses generated from

a single high-energy ultrashort pulse. Part of the original pulse is doubled

ix



x Introduction

in frequency and grants the ionization injection.

In my thesis I focused on the design process, from the development of

an original theoretical model to a possible experimental implementation,

of a simple method of generating the pulse train from a single high-energy

pulse. Particular attention has been devoted to the development of a

cost-effective system that could be easily integrated in existing LWFA ex-

periments. The choice landed on a delay mask, an optical component

consisting of a disk divided in rings of different thicknesses, placed right

before the last focusing optic, typically an Off-Axis Parabola (OAP). In this

way the transverse profile of the original single pulse is split in different

sections, delayed accordingly to the plasma period, that, once focused,

result in a train of pulses at the focal plane of the OAP, where the target is

usually placed.

In the first chapter the physical context is presented, i.e. the basics of

laser beam and pulse characterization together with a brief introduction

to the laser-plasma acceleration field. The second chapter is devoted to

the development of the theoretical and geometrical model for numerical

computation of the electromagnetic fields of a laser beam focused by an

OAP. As evidence of the model validity, a remarkable application is also

presented, describing an intra-cycle depolarization [4], due to the focusing

by an OAP, of an initially linearly polarized laser beam. Finally, the focus

of the third chapter is entirely on the delay mask, from the preliminary

designs to the final characterization of the spatial and temporal profiles of

the pulse train, investigating the viability of such an approach for modern

laboratories.



Chapter 1
Laser-plasma acceleration

The interaction between a ultra-short, high intensity laser pulse and a

plasma can excite longitudinal electrostatic waves, capable of sustaining

fields of the order of 100 GV/m and beyond. Such waves can be used

to accelerate charged particles to GeV energy in a few centimeters, in

comparison to the several kilometres of the traditional radio-frequency

accelerators and without the limitation given by the material breakdown,

as plasma is already ionized. Due to these features, a great interest is being

devoted to this technology, boosted in the last decades by the development

of compact table-top terawatt laser systems.

In this chapter a brief introduction on laser systems is presented to-

gether with the description of the ultra-short laser pulse propagation prop-

erties relevant for the modelling proposed in the second and third chapter.

The theoretical background of laser-plasma interaction is also introduced

in order to specify the physical framework of these experiments and clarify

some concepts.

. Electromagnetic waves

The description of the radiation emitted by laser systems is described by

classical electrodynamics. The electromagnetic field is represented by

1



2 Chapter . Laser-plasma acceleration

two vector quantities, the electric field E (r, t) and the magnetic one B (r, t).

These vectors are finite and continuous functions of the position r in space

and time t. The general description of electromagnetic phenomena is

provided by the set of Maxwell’s equations. In vector formalism and using

standard SI units they are formulated as follows [5]

∇ ·E =
ρ

ε0
(.)

∇ ·B = 0 (.)

∇×E = −∂B
∂t

(.)

∇×B = µ0

(
J+ ε0

∂E
∂t

)
, (.)

where ρ (r, t) is the total electric charge density and J (r, t) is total electric

current density due to the motion of charged particles. These quantities

may be continuous as well as discrete. The universal constants appearing

in the equations are the electric permittivity of vacuum ε0 and the mag-

netic permeability of vacuum µ0. As shown by Maxwell’s equations, the

charge density is the source of the electric field, whilst the magnetic field is

produced by the current density.

In the absence of external sources though, it might be shown that

eqs. (.) to (.) may be alternatively formulated as uncoupled homoge-

neous wave equations for electric field E (r, t) and magnetic field B (r, t) in

order to retrieve an analytical formulation of the electromagnetic waves.

The wave equations are

∆E− 1
c2
∂2E
∂t2

= 0 (.)

∆B− 1
c2
∂2B
∂t2

= 0 , (.)

where the universal constant

c = 1/
√
µ0ε0 (.)



. electromagnetic waves 3

is the speed of light in vacuum, which leads to the essential fact that the

electromagnetic waves propagate in vacuum with the velocity of light.

However, the wave eqs. (.) and (.) do not provide all the informa-

tion about the electric and magnetic field of the wave. There are further

constraints due to the Maxwell’s equations restricting the orientation and

proportional magnitudes of the fields. From eqs. (.) to (.) it might be

clearly seen that E (r, t) and B (r, t) must be mutually perpendicular to each

other as well as to the direction of the wave propagation [6].

.. Gaussian beams

Without any loss of generality, we consider the laser beam as a monochro-

matic electromagnetic wave propagating toward the positive direction of

the z-axis. The description of such a wave is given by the evolution of a

single electric field component linearly polarized along the x-axis of the

Cartesian coordinate system, therefore one has to look for the solution of

eq. (.).

According to the previous assumptions, the solution is expected to be

in the form of the plane wave

E (r⊥, z, t) = Re
(
E0Ψ (r⊥, z)ei(kzz−ωt)

)
x̂ , (.)

where r⊥ = x+ y is the vector of transverse Cartesian coordinates, symbol

Re stands for the real part of the complex quantity, E0 is a constant am-

plitude, Ψ (r⊥, z) is the part of the wave function which is dependent only

on the spatial coordinates, ω denotes the angular frequency and kz is the

z-component of the wave vector k. Direct substitution of eq. (.) into

eq. (.) yields the time-independent form of the scalar wave equation

∆Ψ (r⊥, z) + 2ikz
∂Ψ (r⊥, z)

∂z
= 0 , (.)

also known as the paraxial Helmholtz equation [7], the starting point of the

traditional Gaussian beam theory. This approximation allows the omission

of the term with the second-order derivative in the propagation equation
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(as derived from Maxwell’s equations), so that a first-order differential

equation results. The solution can be thus expected to be in the form of a

Gaussian function, and after some algebra, one can write

Ψ (r⊥, z) =
w0

w (z)
exp

[
− r⊥2

w (z)2 + i
(
kz

r⊥2

2R (z)
−ϕG (z)

)]
, (.)

where the parameters are defined as

w (z) = w0

√
1 +

(
z
zR

)2

, R (z) = z
[
1 +

(zR

z

)2
]
, ϕG (z) = arctan

(
z
zR

)
.

(.)

Before describing these three quantities it is necessary to explain what

parameters they depend on. ω0 is the beam waist, defined as the radius at

which the laser intensity fall to 1/e2 of its axial value at the focal spot. The

second parameter, zR = πω2
0

λ , is the Rayleigh length which is the distance in

the longitudinal direction from the focal spot to the point where the beam

radius is
√

2 larger than the beam waist w0. There is also another useful

parameter to mention: it is denoted by Θ = λ
πω0

and it is the divergence

angle of the beam that represents the ratio of the transverse to the longi-

tudinal extent. Note that these parameters are exploited in the geometry

description of focused beams.

Back to the Gaussian beam parameters, the function w (z) represents

the spot size parameter of the beam, that is the radius at which the laser

intensity fall to 1/e2 of its axial value at any position z along the beam

propagation. Note that the beam waist correspond to the minimum spot

size (w(0) = w0). R (z), is the radius of curvature of the beam wavefront at

any position z along the beam propagation axis. Note that limz→0R(z) =∞,

i.e. the beam behaves like a plane wave at focus as required. Finally, ϕG (z),

known as Gouy phase, describes a phase shift in the wave as it passes

through the focal spot.
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.. Pulse optics

Lasers are characterized by a variety of parameters, but a core distinction

can be made, based on the produced radiation, between lasers operating in

Continuous-Wave (CW) and pulsed mode. As the name suggests CW lasers

are generally characterized by the constant emission of monochromatic

light, thus having a constant output power over time. For example, among

modern technology, fiber lasers are able to reach tens of kW of CW optical

power [8].

However, in order to reach very high power, a pulsed mode is used in

which energy is concentrated in a short time. In this way pulsed lasers have

higher peak power for the same average energy per unit time with respect

to CW lasers. Intuitively the peak power Pp increases inversely with the

pulse duration ∆t (intended as the Full Width at Half Maximum (FWHM)),

which can be written [9]

Pp = ks
Ep
∆t
, (.)

where Ep is the laser energy and ks is a constant that depends upon the

pulse shape.

From the previous equation one could think to shrink the pulse duration

as much as desired but that is not possible due to the dependence between

duration and spectral width.

Consider a generic monochromatic plane wave with the transverse

electric field given by

Ey = Re(E0eiω0t) , (.)

where ω0 is the angular frequency. Such wave extends indefinitely in time

and space, i.e. its duration is infinite, and, by definition, its spectrum

consists only of the oscillating frequency ω0.

The thorough mathematical approach makes use of the Fourier trans-

form to switch between the time domain and the frequency domain of a

For a Gaussian pulse shape ks = 0.94
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wave, written as [10]

E(ω) =
∫ +∞

−∞
E(t)e−iωtdt ≡ F {E(t)} (.)

for the direct Fourier transform and

E(t) =
1

2π

∫ +∞

−∞
E(ω)eiωtdω ≡ F −1{E(ω)} (.)

for the inverse one.

Applying the transform to the plane wave one gets

E(ω) =
∫ +∞

−∞
ei(ω−ω0)tdt = δ(ω −ω0) , (.)

δ(ω −ω0) being the Dirac distribution centered in ω0 with a zero width,

thus confirming the presence a singular frequency. Note that this is true

for a wave propagating throughout an infinite amount of time. Just the

assumption that a wave vanishes at a certain far-away moment results in a

broadening of the Dirac distribution, hence the appearing of a frequency

spectrum.

On the other hand a pulsed wave, or pulse, has, by definition, a finite

duration, so, in order to study its spectrum, consider the same wave of

eq. (.) and multiply it by a Gaussian envelope (see Fig. .(a))

Ey = Re
(
E0e−Γ t

2+iω0t
)
, Γ ∈R+ , (.)

where Γ is the real-valued shape factor of the envelope, proportional to

the inverse of the squared pulse duration. This time the Fourier transform

yields

E(ω) = exp
(−(ω −ω0)2

4Γ

)
, (.)

which is still a Gaussian function, centered in ω0, with a finite spectrum

width proportional to Γ . Hence the result of applying an envelope to a

monochromatic wave is the appearance of a frequency spectrum in spite

of the unique central one. Pulses can be in general defined by differ-

ent bell-shaped functions, i.e. functions that asymptotically vanish for
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large positive and negative abscissa and with a single maximum, but the

Gaussian function being its own Fourier transform makes it particularly

convenient.

The relation between pulse duration and spectrum width can be inferred

from their statistical definitions

〈∆t〉 =

∫ +∞
−∞ t|E(t)|2dt∫ +∞
−∞ |E(t)|2dt

, (.)

〈∆ω〉 =

∫ +∞
−∞ ω2|E(ω)|2dω∫ +∞
−∞ |E(ω)|2dω

, (.)

which can be shown to be [10]

∆t∆ω ≥ 1
2
. (.)

This classical-physics relation, reminiscent of the quantum-mechanical

time-energy uncertainty principle, can be expressed in terms of more

suitable quantities from an experimental point of view, such as

∆ν∆t = K , (.)

where ∆ν is the frequency FWHM, as well as ∆t is the FWHM pulse dura-

tion and K is a constant which value depends upon the shape of the pulse.

Recalling that |∆ν/ν0| = ∆λ/λ0 (ν0 being the central frequency and λ0 the

corresponding wavelength) and that c = λν, c being the velocity of light,

it is possible to write the previous equation in terms of the wavelength

bandwidth ∆λ

∆t = K
λ2

0

c∆λ
. (.)

This relationship has several consequences on ultra-short light pulses.

Mainly it means that the generation of a light pulse with a given duration is

constrained by the use of a broad enough spectral bandwidth. For example,

a Gaussian-shaped pulse (K = 0.441) with a central wavelength of 800 nm

and a duration of 40 fs has a wavelength extension of 23.5 nm. Gaussian
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t

E(t)

(a)

t

E(t)

(b)

Figure .: Time evolution of a pulse. (A) represents a simple pulse built by

multiplying a cosine function (in grey) by a Gaussian-shape envelope (in red). (B)

represents the same pulse with the introduction of a negative chirp, i.e. a quadratic

dependence upon time resulting in the frequency linearly diminishing through its

evolution.

functions have also the property of being the most “efficient” envelope

since the equality in eq. (.) is reached only using such profile. In this

case the pulse is called Fourier-transform-limited and has the shortest

possible duration.

As a final remark on pulse description, let’s focus on the instantaneous

frequency. Considering again the light pulse as in eq. (.), the instanta-

neous frequency is obtained as the time derivative of the phase, readily

ω(t) =
dΦ
dt

=ω0 . (.)

As expected the angular frequency is constant and equals the central wave-

length ω0 and the pulse, as already seen, is transform-limited. Introduce

now an arbitrary quadratic dependence upon time in the phase of the pulse,

as in

Ey = Re
(
E0e−Γ t

2+i(ω0t+αt2)
)
, α ∈R . (.)
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Calculating again the instantaneous frequency one gets

ω(t) =
dΦ
dt

=ω0 +αt , (.)

which readily means that the frequency varies linearly in time. A pulse

exhibiting this behaviour is called chirp. More specifically, when the

frequency increases (α > 0) it is called up-chirped pulse whilst down-chirped

when the frequency decrease (α < 0). A graphical example of the latter is

displayed in Fig. .(b). The role of this characteristic will be clarified in

the following discussion on pulse propagation.

.. Pulse propagation

When considering the propagation of ultra-short pulses in optical media

dispersion phenomena become important. The velocity of propagation of

an electromagnetic wave is frequency dependent, except in vacuum, where

all electromagnetic waves travel at the same phase velocity (the speed of

light), as can be demonstrated through solving Maxwell’s equations [5].

The physical origin of dispersion can be accounted for by considering

the propagation of an electromagnetic wave through an atomic or molecular

medium. This propagation occurs due to the atoms becoming polarized

by the passing oscillatory electromagnetic field and, provided there is no

absorption, the wave propagates through the medium undisturbed thanks

to the quasi-elastic restoring force acting on the electrons that have been

polarized within the atomic or molecular medium . However at frequencies

where there is absorption, energy is transferred from the wave into the

medium, with the energy dissipated either in the form of subsequent atomic

emissions or heat . The polarizability of a medium therefore defines the

propagation of electromagnetic waves which pass through the medium, and

The number 2 at the denominator has been embedded in α for readability and without

losing generality.
The word is a reference to birds’ chirp, the pitch of which changes from the start to

the end of the sound.
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features complex behaviours such as resonances around given frequencies.

This polarizability is therefore a complex function which depends upon the

exact response of the atoms or molecules to a propagating electromagnetic

wave.

The polynomial expansion of the macroscopic polarization induced by

an electric field E clearly shows the different regimes of study. It is given

by
P
ε0

= χ(1) ·E+χ(2) ·EE+χ(3) ·EEE+ · · · (.)

where ε0 is the electric permittivity. The linear first-order term in the

electric field describes the so called linear optics, while the nonlinear

higher-order terms account for nonlinear optical effects.

In order to write the analytical expressions of the dispersion parameters

in the linear optics regime, consider again a generic Gaussian pulse with

the transverse electric field given by

Ey = Re
(
E0e−Γ t

2+iω0t
)
, (.)

and the Fourier transform of which has already been written as

E(ω) = exp
(−(ω −ω0)2

4Γ

)
. (.)

Considering now that the pulse propagates inside a medium in the x

direction, the spectrum becomes

E(ω,x) = E0(ω)e−ik(ω)x , (.)

where k(ω) is the frequency-dependent wave number, namely

k(ω) = n(ω)
ω
c
. (.)

n is the refractive index of the medium and it is also frequency-dependent.

Assuming that the bandwidth ∆ω� ω0 (condition only weakly true for

ultra-short pulses) one can express k in terms of the angular frequency ω

applying a Taylor expansion:

k(ω) = k(ω0) + k′(ω −ω0) + k′′(ω −ω0)2 +O(ω3) , (.)
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where

k′ =
(

dk
dω

)
ω0

k′′ =
(

d2k

dω2

)
ω0

. (.)

Therefore substituting in eq. (.) the spectrum becomes

E(ω,x) = exp
[
−ik(ω0)x − ik′x(ω −ω0)−

( 1
4Γ

+
i
2
k′′x

)
(ω −ω0)2

]
(.)

from which one can retrieve the time evolution of the electric field operat-

ing the inverse Fourier transform (.) so that

E(t,x) =

√
Γ (x)
π

exp
[
iω0

(
t − x

vφ(ω0)

)]
× exp

−Γ (x)
(
t − x

vg(ω0)

)2 , (.)

where

vφ(ω0) =
(ω
k

)
ω0

vg(ω0) =
(

dω
dk

)
ω0

1
Γ (x)

=
1
Γ

+ 2ik′′x , (.)

with the definition of vφ and vg being the phase velocity and the group

velocity, respectively, while the term k′′ is called Group Velocity Disper-

sion (GVD). Recalling the expressions for the wave number k and the

wavelength λ in a medium

k =
2π
λ

λ =
2πc
ωn(ω)

⇒ k =
ωn(ω)
c

, (.)

it is possible to write the velocities in terms of n as

vφ =
c
n

(.)

vg =
1

dk/dω
=
c
n

1

1 + ω
n

dn
dω

=
c
n

1

1− λn dn
dλ

. (.)

The first exponential term of eq. (.) expresses a delay of the central

wavelength ω0 by an amount x/vφ. Because of the nature of the phase, not

being a measurable quantity, this effect has no observable consequences.

The second term, instead, contains two important information: the pulse

keeps a Gaussian envelope and its maximum is delayed by an amount x/vg .
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In order to characterize the evolution of the Gaussian envelope, one can

rewrite Γ (x) as

Γ (x) =
Γ

1 + ξ2x2 − i
Γ

1 + ξ2x2 , ξ = 2Γ k′′ , (.)

and substitute in the second exponential term of eq. (.). It yields

exp

− Γ

1 + ξ2x2

(
t − x

vg

)2

+ i
Γ ξx

1 + ξ2x2

(
t − x

vg

)2 . (.)

The real part represents the delayed Gaussian function with a shape factor

Γ

1 + ξ2x2 (.)

always smaller than the original one, which means that the pulse faces a

broadening in duration as the effect of GVD. The imaginary part adds a

quadratic time term to the phase, introducing, as already seen, a linear

chirp in a previously transform-limited pulse. On the other side this also

means that an initially chirped pulse that propagates through a medium

can overcome this effect and even shrink its duration, based on chirp value.

In summary, this discussion on linear optics shows the importance

of dispersion effects on a propagating pulses, which, even limiting the

expansion to the second term, undergo a group delay, a duration increase

and a chirp.

Third Order Dispersion (TOD) and Fourth Order Dispersion (FOD)

can be evaluated as well, considering higher term of the Taylor series

eq. (.). Since they are not needed for the purpose of this thesis, only a

brief description of their effect will be given.

TOD results in a set of sub pulses that follows or precedes, based on the

sign, the main pulse.

FOD induces, as the GVD, a symmetrical stretch in time domain with a

more complex shape.
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. High-power lasers

Lasers are among the most significant inventions of the last century. Since

their first appearance in  [11], they boosted up the studies in many

fields and provided an excellent source of high fields thus opening the

opportunity to understand and investigate a wide range of phenomena,

such as the atomic behaviour of matter or to observe nonlinear effects.

.. Laser systems evolution

In the early years, the evolution of laser intensity was marked by two main

innovations: first Q-switching [12] and later mode-locking [13]. The former

is based on increasing the number of electrons in the excited state of the

laser active medium by mean of a sudden variation of the quality factor of

the resonator cavity. The latter instead exploits the phase coherence of the

cavity modes in the resonator. Both schemes result in a pulsed emission.

In order to reach high intensities, the laser emission of the resonator

cavity can be fed into a sequence of amplifying stages; before  all

amplifier systems were based on direct amplification. Indeed, if coherent

radiation is made to pass through an excited active medium, it stimulates

further coherent radiation emission. Thus a laser pulse can be coherently

amplified extracting energy from the active medium. A good amplification

efficiency is reached when the initial fluence of the pulse is of the order of

the saturation fluence of the material, i.e. the maximum energy per unit

area that can be extracted from the amplifier. This value, given by Fsat = ~ω
σ ,

where ~ is Planck’s constant, ω the angular laser frequency and σ the

amplyfing transition cross section of the material, is of the order of J/cm2

for crystals and mJ/cm2 for dyes and excimers. The initial approach was

to use the latter ones, materials with low-energy storage, and to increase

the laser beams width in order to lower laser intensity thus preventing

nonlinear effects and the “breakdown” of the optical components, i.e. the

ionization of the materials involved in the beam line.
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Figure .: Historical evolution of lasers intensity. Picture adapted from [14].
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Oscillator Stretcher Amplifier Compressor

Figure .: Schematic stages of CPA.

Moreover, the pulsed nature of these lasers sets a strong limit to the

amplification process since the pulse duration is related to its spectral

width such that short pulses contain wide frequency components (see

eq. (.)). This means that for shorter pulses it would be necessary to have

active mediums with larger gain bandwidth.

As a consequence of these limitations, the maximum focused intensity

reached through the years remained almost the same for over a decade

(see Fig. .), until the introduction of the Chirped Pulse Amplification

(CPA) [15].

This technique, awarded with Nobel Prize in physics in , consists

essentially in manipulating the pulse in order to simplify the amplification

processes. The temporal duration of the laser pulse is increased introduc-

ing a chirp: by means of a couple of gratings the spectral components of

the pulse are dispersed according to their frequency. This stretched pulse

is easier to amplify efficiently, lowering the risks of damage for the opti-

cal components. After the amplification stage, the dispersion of spectral

components can be reversed in the compressor stage with another couple

of gratings, bringing the pulse duration back to close to its initial value.

Fig. . shows a conceptual representation of the CPA steps. Most of the

high-power laser systems employ this method, reaching focused intensity

up to 1020 Wcm−2.
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. Introduction to plasmas

The general definition of plasma is a collection of ionized matter that

admits quasi-neutrality and exhibits collective behaviour [16]. The term

quasi-neutrality means neutral enough so that the electron and ion charge

densities are approximately equal over a large scale. Collective behaviour

implies the existence of long ranged electromagnetic force; then the motion

depends not only on local conditions, but on remote regions of plasma as

well.

However, on the timescale of an ultra-short laser pulse, only the motion

of electrons needs to be considered as the ions have much larger masses, and

they can thus be treated as a stationary, positively charged background. The

motion of an electron in external electric and magnetic fields is described

by the Lorentz equation, and when the time duration of the laser pulse is

very short, the result is a time-averaged force called the ponderomotive

force, fp. It is showed to be [17]

fp ∝ −q
2

m
∇I , (.)

where q and m are the particle charge and mass, respectively. This means

that charged particles are pushed away from regions of high intensity irre-

spective of the sign of q, and the force is greater for the lightest particles, i.e.

electrons. The resulting charge separation creates electrostatic fields, and

displaced electrons behind the laser pulse will start to oscillate. Globally, a

plasma has no net charge, so ne = Zni , where ni is the ion number density.

The local charge displacement introduced by the laser pulse is shielded

by plasma electrons over a characteristic distance called the Debye length,

defined as

λD =

√
ε0kBTe
q2
ene

, (.)

where ε0 is the permittivity in free space, kB the Boltzmann’s constant

and Te is electron temperature. Physically, the Debye length decreases
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with increasing electron number density, since more electrons are available

for shielding. It is also reasonable that λD increases with Te , since the

electrons become more spread out at higher temperatures. The plasma

response to an external electric field is not instantaneous but depends on

its characteristic time scale. Introducing the plasma frequency as

ωpe =

√
q2
ene
ε0me

, (.)

the plasma response to external perturbation can be seen as ω−1
pe .

It is also possible to derive a wave equation that describes the collective

motion of electrons in plasmas. For small charge density displacements

∆ne its solution yields a dispersion relation for the propagation of an

electromagnetic wave with frequency ω0 in the plasma

ω2
0 −ω2

pe = k2c2 . (.)

From the previous equation it is possible to define two different types of

plasmas. The first is ω0 < ωpe, for which k becomes imaginary. In this case,

the plasma is called overdense, and the electrons are able to move together

with the electric field in the laser pulse, which means that the laser field

is effectively stopped and the pulse cannot propagate through the plasma.

The second case is when ω0 > ωpe, and the plasma is transparent to the

incoming laser pulse. This is called an underdense plasma, and arises from

low-density targets, such as gases and plasmas expanding into vacuum. It

is possible to determine a critical density nc at which the laser frequency is

equal to the plasma frequency, which defines the boundary between these

two regimes

nc =
ε0meω

2
0

q2
e

. (.)

Overdense plasmas are often formed when an intense laser pulse inter-

acts with a solid target. This type of plasma can be used for ion acceleration,

typically in Target Normal Sheath Acceleration (TNSA). However a brief

discussion of different acceleration is provided in what follows.
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. Laser-plasma acceleration

One of the most important application of laser-plasma interaction is the

acceleration of charged particles. Nowadays, traditional radio-frequency

accelerators are the prevalent and most reliable source of accelerated parti-

cle but this technology has some limitations, mainly due to the material

breakdown of the components. Plasmas don’t have such a constraint, being

already ionized, and are capable of sustaining field of the order of hundreds

of GV/m.

Hence the recent years have been particularly exciting for this field of

study and several models have been proposed for different acceleration

scheme. There is one aspect, though, in common for every setups: in order

to obtained the necessary high intensity onto the target, the laser pulse

need to be focused. And the higher the pulse energy becomes the more

precise the focused electromagnetic fields characterization needs to be.

As a reference case a brief discussion on electron acceleration is pre-

sented.

.. LWFA

In  Tajima and Dawson [1] proposed the use of a short laser pulse of

a very high intensity, to excite a longitudinal wakefield in the plasma. This

model is called Laser WakeField Acceleration. When such a high intensity

laser pulse is incident on a gas target, its leading edge ionizes the gas. The

laser light propagates in this plasma with a velocity equal to the group

velocity

vg ≈ c
1− ω2

pe

2γω2
0

 (.)

in a plasma, which, for plasma densities small compared to the critical

density, is nearly equal to the velocity of the light. The short laser pulse

has a strong intensity variation in time and correspondingly in space. This

leads to a strong longitudinal ponderomotive force. The spatial extent of
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this ponderomotive force, and that of the density perturbation caused by it,

is of the order of 2cτ , where τ is the duration of the laser pulse. If this is

made equal to the plasma wavelength (λpe = 2πc/ωpe), then high amplitude

wakefields are produced due to quasi-resonance of the front push and the

rear one. The wakefield moves with the pulse at a phase velocity equal to

the group velocity of the laser pulse. Therefore, a correctly placed trailing

bunch of relativistic electrons can be accelerated by the longitudinal field,

with magnitude of 100 GV/m, of the plasma waves.

This model has already proven its validity, reaching accelerated electron

bunch energy of 8 GeV [2]. However the poor quality of the bunch in terms

of emittance and energy spread limits the possible applications.

One of the promising solution is to separate the wakefield generation

and the injection mechanism. In the Resonant Multi-Pulse Ionization

injection (ReMPI) scheme [3], for example, the idea is to excite the wake

with a train of low-energy pulses separated in time by a plasma period. The

wake excitation of each pulse resonantly adds, driving a final wakefield

even stronger than in traditional Laser WakeField Acceleration (LWFA)

(see Fig. .). A second pulse, doubled or tripled in frequency, grants the

ionization injection. Since a laser system capable of delivering the required

pulse train should operate at a repetition rate of 100 GHz, not realistically

feasible, it is necessary to generate such a train from a single high-energy

pulse. At the beginning of chapter  an overview of proposed models is

presented followed by an original design presented in this work.
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Chapter 2
The e.m. field in the focal region

of anOAP: a theoretical model and

a study of depolarization

As stated in the first chapter, in most of the laser-plasma experimental se-

tups the laser beam is focused onto the target by an Off-Axis Parabola (OAP).

This optical element is typically placed inside the interaction chamber and

is the last one manipulating the laser beam. In these experiments the

laser spot quality is checked throughout all the beam line steps but the

dimension and intensity of the focused spot (of the order respectively of

µm and ≥ 1018 W/cm2) make the experimental measurements difficult and

inaccurate. Hence it is clear the importance of a thorough characterization

by means of numerical simulations of the electromagnetic field produced

by laser beam in the focus region of the OAP.

In this chapter a geometrical and theoretical model is developed, fol-

lowed by a remarkable application in the field of laser-plasma acceleration,

concerning intra-cycle depolarization. This theoretical scheme enables the

numerical approach for the modelling of the delay mask presented in the

next chapter.

21
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. Geometrical and theoretical framework

An Off-Axis Parabola is a mirror whose reflecting surface is a segment of

a paraboloid, called parent, not containing its symmetry axis. Fig. .(b)

shows a real model of OAP available on the market. These devices are char-

acterized by some parameters, provided by the manufacturing companies,

such as off-axis angle, clear aperture, parent focal length and apparent

focal length. Along with these geometrical quantities there are also other

properties to consider when selecting an OAP such as material, coating,

operational wavelength, optical properties in general, which are crucial in

the context of a real experimental setup but in this thesis, where perfect

reflection is assumed and surface degradation is not taken into account, are

neglected.

After a brief introduction on previously developed models regarding

electromagnetic field characterization of beam focused by parabolic mirror,

a fully comprehensive geometrical and theoretical description is presented

in order to clarify some concepts and introduce the operational framework.

.. Overview

The in-depth study on the structure of the electromagnetic field of beams

focused by means of parabolic surfaces was initially undertaken in the field

of optical microscopy, thus mainly concerning on-axis configurations. The

earliest works were based on geometric optics approaches [18]. For example

in [19] a mixed method is used: the beam is geometrically propagated

from the parabolic mirror to a spherical surface which is then used as

the boundary surface in a vector diffraction treatment based upon the

Stratton-Chu theory [20].

The first studies based on a direct numerical integration of diffraction

integrals, for either off-axis [21] or on-axis [22, 23] parabolic mirrors, date

back to the early s. Such approaches, made possible by the availability

of advanced numerical integration schemes and increasingly powerful
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simulation platforms, were driven by the need for tight focusing in various

applications.

Motivated by the widespread diffusion of OAP as optical devices to

focus ultrashort laser pulses, a growing attention is being devoted by the

community of laser–matter interaction to the experimental and theoretical

characterization of the intensity pattern in the focal region of high-intensity

beams.

As it is known since the first works dealing with the focusing of ultra-

short pulses by lenses [24], the envelope of the focused pulse takes on a

rather complex structure in the far-field region, so that analytical frame-

works able to predict the detailed electromagnetic field behaviour of an

ultrashort pulse focused by an OAP would be desirable. However, as it can

be easily realized, such treatments are rather cumbersome, due to both the

ultrashort duration (implying large bandwidth) and the structure of the

boundary surface (the parabolic mirror).

A theory enabling the study of the far field of femtosecond pulses

focused by a parabolic mirror, although in an on-axis configuration, was

recently presented in [25], aimed at investigating the ultimate intensity

achievable under very tight focusing (f /# < 1) with the next generation

& 10PW systems. In particular, the authors first developed a theoretical

treatment based on vector diffraction theory for a monochromatic wave

upon reflection from the on-axis parabolic surface; based on that, the fields

in the focal region of a femtosecond pulse are then calculated using a

coherent superposition of monochromatic beams with suitable spectral

amplitude and phase relationships.

A different approach was more recently proposed in [26]. The method

provides an equation (for a Hertz-type vector potential) with the same

structure of a unidirectional pulse propagation equation, which can be

thus numerically solved using standard beam propagation methods. The

reflection from an on-axis parabolic surface is taken into account using

suitable initial conditions for the beam to be propagated. By comparison
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Figure .: An off-axis parabola is geometrically defined (A) as the intersection

between a cylinder and a paraboloid with non-coincident axes separated by a

certain quantity dOAD. (B) is a real commercial model of OAP mirror sold by the

company Thorlabs.

with full vector diffraction calculations the authors find out that their

method gives pretty accurate results down to f /# ∼ 2-3, while a -step

method, involving the numerical integration of a diffraction integral, has

to be used for smaller f-numbers.

In what follows an exact theoretical model is presented, based on a full

vector diffraction treatment and also retaining the time dependence of the

electromagnetic field as provided by its initial phase. This approach allows

the electric and magnetic field of a beam focused by an OAP to be retrieved

at any given time and space.

.. Off-Axis Parabolic mirror

A paraboloidal surface results, by definition, from the revolution of a

planar parabola around its symmetry axis. Accordingly, the OAP surface

(indicated hereafter by SOAP), with circular aperture, results from the

intersection of the above-mentioned paraboloid and a cylinder having its

axis parallel (only coincident in the on-axis case) to the paraboloid one, as

depicted in Fig. .(a). The distance between the two axes is denoted by
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Figure .: Meridional and sagittal sections of the geometry considered. The xyz

coordinate system origin coincide with the paraboloid vertex. Every quantity is

clearly labeled and the geometrical definitions are explained in the text.

dOAD.

Fig. . provides the cartesian coordinate system considered, with the

origin in the parent paraboloid vertex and the z axis coincident with the

paraboloid axis, oriented in such a way that the focus point xf = (0,0, f )

lays in the positive part of z, i.e. the focal length f is positive. With

these conventions xz and yz planes are thus referred as the meridional and

sagittal planes, respectively.

The equation of the paraboloid is then given by

z =
x2 + y2

4f
= a (x2 + y2) = s(x,y)f , (.)

with a = 1
4f and s(x,y) = a

f (x2 + y2) for later convenience. The OAP surface

is defined by the condition

SOAP : (x − dOAD)2 + y2 ≤
(
d
2

)2

, (.)

d being the diameter of the OAP. From a practical point of view, it is worth

noticing that manufacturers call diameter the whole structure, i.e. the

parabolic mirror and its housing, while clear aperture the area that actually

interact with the light. In this thesis there won’t be this difference and the

diameter will be considered as the entire reflecting surface.
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It is necessary now to calculate the area element and the normal to the

surface. Equation (.) shows that, in cartesian coordinate, the parametric

representation of the paraboloid depends on x and y. Thus the tangent

vectors are

drx =
(
1, 0,

1
2f
x

)
dry =

(
0, 1,

1
2f
y

)
, (.)

and for the surface element vector

dA = drx ×dry = − 1
2f
x x̂− 1

2f
y ŷ+ ẑ . (.)

Finally, the area element and the unit inward, i.e. towards the focus point,

vector are expressed as

dA =
√

1 + s(x,y)dxdy (.)

n̂ =
1√

1 + s(x,y)

(
− x

2f
, − y

2f
, 1

)
. (.)

The quantity dOAD has been already defined as the distance between

the axes of the parental paraboloid and the boundary cylinder. The axis

of this cylinder intercepts the OAP surface in what is defined as the OAP

center xc = (dOAD, 0, ad
2
OAD). The distance between this point and the focus

is called Apparent Focal Length (AFL) and it is the path length of an

incoming ray parallel to the z axis, namely the central ray, impinging on

the OAP center and focused in f .

Finally the off-axis angle θOA is introduced as the angle formed by the

central ray with the z axis. It is simply calculated as

θOA = arctan

 dOAD

f − d2
OAD
4f

 . (.)

Since manufacturers typically differentiate and label the models in

terms of the off-axis angle and the AFL we need another equation to fully

calculate each quantity. From the geometrical definition of the parabola

as the locus of points equally distant from the point f and the directrix
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z = −f (in the meridional plane) we have, considering the OAP center,

AFL = f +
d2

OAD

4f
. (.)

This equation along with eq. (.) form a closed system of equations from

which the quantities f and dOAD can be retrieved.

For later convenience, we will consider another cartesian coordinate

system, obtained from the previous one by translating the origin into the

focus point and rotating around the y axis by the off-axis angle. This system

has the z axis parallel to central ray and the xy plane transverse to it and it

is denoted in Fig. . by XYZ.

.. Reflected electromagnetic fields

Now the general behavior of the electromagnetic fields and how they

are reflected from the paraboloid surface will be discussed. We denote

the incident electric and magnetic fields by Ei and Bi respectively, and

assume perfect reflection, i.e. the % of the incoming radiation leaves

the reflecting surface. Fields dependence on time and space has been

omitted for clarity. In the discussion presented by Varga and Török in

[22], it is stated that upon reflection the normal component of the electric

field and the tangential component of the magnetic field remain unchanged.

Recalling that n̂ is the direction vector of the reflected field, one may write

Er,n = Ei,n = n̂(n̂ ·Ei) (.)

Br,t = Bi,t = Bi −Bi,n , (.)

where the first subscript index indicates the incident (reflected) field i (r)

while the second one the normal (tangential) component n (t). On the

other hand, the tangential component of the electric field and the normal

component of the magnetic field change sign, that is

Er,t = −Ei,t = −(Ei −Er,n) (.)

Br,n = −Bi,n = − n̂(n̂ ·Bi) . (.)
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Combining eqs. (.) and (.) one obtains the total reflected electric field,

and similarly for the total reflected magnetic field, expressed as

Er = 2 n̂(n̂ ·Ei)−Ei (.)

Br = Bi − 2 n̂(n̂ ·Bi) . (.)

Finally one can write the total electromagnetic fields, i.e. incident and

reflected, from the previous equations as

E = Ei +Er = 2 n̂(n̂ ·Ei) (.)

B = Bi +Br = 2Bi − 2 n̂(n̂ ·Bi) , (.)

where it is worth noticing that the total fields are expressed as function of

the incident ones only.

.. Full vector diffraction model for an OAP

For a rigorous evaluation of the electromagnetic fields in focal region we

use the Stratton-Chu vector diffraction theory [20] in this work. Such

approach allows to fully characterize the spatial and temporal properties

of the diffracted fields. As recently discussed in [27], Stratton-Chu theory

allows, in general, the treatment of beam with sharp transverse profile, with

respect to a more direct approach based on the Green’s theorem applied to

each field. In this work it is assumed that the reflection is always perfect,

meaning that the totality of the fields scattered off the surface leaves the

mirror.

Assuming that the electromagnetic field of the incident monochromatic

laser beam can be formally factorized into the temporal and spatial domain,

meaning that either domain is independent from the other, one can thus

write

Ei(x, t) ≡ Ei(x)e−iωt (.)

Bi(x, t) ≡ Bi(x)e−iωt , (.)
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where ω is the angular frequency of the beam, and treat the spatial part

with the full vector diffraction theory provided by the Stratton-Chu equa-

tions.

Stratton-Chu formulation states that if the electric and magnetic fields

are known on a closed surface A, then the diffracted fields are uniquely

determined at a point xp in the far-field from the formulas:

E(xp) =
1

4π

∫
A

[ik(n̂×B)G+ (n̂×E)×∇G+ (n̂ ·E)∇G]dA (.)

B(xp) =
1

4π

∫
A

[ik(E× n̂)G+ (n̂×B)×∇G+ (n̂ ·B)∇G]dA, (.)

where k = 2π/λ = ω/c is the wavenumber of the incident beam. In these

equations the contour term, i.e. the contour integral over the surface

boundary, is omitted because it has been shown [22] to be negligible in the

far-field calculation, which is the condition we are interested in. Here G is

the Green function, solution of the Helmholtz equation, expressed as

G(x) = G(x− xp) =
eik|x−xp |

|x− xp|
≡ eiku

u
, (.)

where we defined u = |u| = |x − xp|, representing the distance between a

point x on the surface the integration is carried over and xp. The gradient

of G can be easily calculated from the previous expression as

∇G =
ikueiku − eiku

u2

(
(x − xp) x̂+ (y − yp) ŷ+ (z − zp) ẑ

)
= ik

(
1− 1

iku

) G
u

(
(x − xp) x̂+ (y − yp) ŷ+ (z − zp) ẑ

)
. (.)

In order to write the final integrals it is necessary to characterize the

incident laser beam. We consider a monochromatic laser beam with a

planar wavefront, a super-gaussian transverse profile, impinging on the

The Helmholtz equation represents the time-independent form of the wave equation

and it is given by

(∇2 + k2)A(x) = 0 ,

A being the amplitude.
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OAP center with its axis parallel to the z axis. With this assumptions the

fields can be written as

Ei(x, t) = A(x,y)eikp(x)(cosδ x̂+ sinδ ŷ)e−iωt = Ei(x)e−iωt (.)

Bi(x, t) = A(x,y)eikp(x)(sinδ x̂− cosδ ŷ)e−iωt = Bi(x)e−iωt , (.)

with the amplitude on a generic reference plane given by

A(x,y) = A0 exp

−1
2

(x − dOAD

σx

)2

+
(
y

σy

)2n (.)

representing the super-gaussian profile of order n, shifted in the x direction

in order to be coaxial with the OAP center. The angle δ is introduced to

account for different polarization directions; in particular, δ = 0 (δ = π/2)

corresponds to a linear polarization in the meridional (sagittal) plane.

Finally, assuming as an arbitrary reference plane the one where the OAP

center lays, the term

p(x) = a
(
d2

OAD − (x2 + y2)
)

(.)

represents the optical path difference between a point (x,y,ad2
OAD) on the

reference plane and a point (x,y,a(x2 + y2)) on the OAP surface.

The fields inside eqs. (.) and (.) are the sum of the incident and

reflected fields. Therefore, substituting eqs. (.) and (.) one gets

E(xp) =
1

2π

∫
OAP

ik(n̂×Bi(x))G+ (n̂ ·Ei)∇GdA (.)

B(xp) =
1

2π

∫
OAP

(n̂ · ∇G)Bi(x)− (Bi(x) · ∇G) n̂dA, (.)

where SOAP has been replaced by OAP for readability.

All the necessary quantities have been previously defined thus, after

some cumbersome algebra, one gets a more explicit expression of the

electromagnetic field components, considering also the time dependence,
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in the form of

Ej(xp, t) =
i
λ

"
OAP

gEj (x,xp)A(x,y)eik(u(x,xp)+p(xp))e−iωt dxdy (.)

Bj(xp, t) =
i
λ

"
OAP

1
u2

(
1− 1

iku

)
gBj (x,xp)A(x,y)eik(u(x,xp)+p(xp))e−iωt dxdy ,

(.)

with the index j = x,y,z representing each cartesian component. The

functions g(x,xp) can be written as

gEx =
1
u

cosδ − 1
u2

(
1− 1

iku

)(xcosδ+ y sinδ
2f

)
(x − xp) (.)

gEy =
1
u

sinδ − 1
u2

(
1− 1

iku

)(xcosδ+ y sinδ
2f

)
(y − yp) (.)

gEz =
1
u

(
xcosδ+ y sinδ

2f

)
− 1
u2

(
1− 1

iku

)(xcosδ+ y sinδ
2f

)
(z − zp) (.)

and

gBx = −
(
xcosδ+ y sinδ

2f

)
(y − yp) + sinδ (z − zp) (.)

gBy =
(
xcosδ+ y sinδ

2f

)
(x − xp)− cosδ (z − zp) (.)

gBz = −sinδ (x − xp) + cosδ (y − yp) . (.)

It is worth noticing that the gE are complex-valued functions while the gB
are real-valued, basically due to the fact that the factor

(
1− 1

iku

)
has been

factorized.

Finally the real part of these fields, which is the pivotal quantity to be

evaluated from an experimental point of view, can be readily written as

E
(r)
j = −1

λ

"
OAP

(
g

(r)
Ej

sin(kv −ωt) + g(i)
Ej

cos(kv −ωt)
)
Adxdy (.)

B
(r)
j = −1

λ

"
OAP

gBj
1
u2

(
sin(kv −ωt) +

1
ku

cos(kv −ωt)
)
Adxdy , (.)

where v(x,xp) = u(x,xp) + p(xp). The notation f (r) ≡ Re(f ) and f (i) ≡ Im(f )

denotes respectively the real and the imaginary part of a complex function.

In what follows the real part notation is omitted for readibility.
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Equations (.) and (.) allow the calculation of the electric and

magnetic field reflected by an OAP at any time, meaning also at a sub-

cycle level, and space. Although this model doesn’t provide an analytically

closed set of expressions, thus requiring a numerical computation, it is an

original developed work that doesn’t present any approximation or Taylor

expansion, retaining a general validity for many different applications.

. Numerical integration

The main goal of the model presented in the previous section is to allow the

computation of the three-dimensional electromagnetic field components

in order to fully characterize focused beams and study their behavior in

different situations. For this purpose it has been necessary to develop an

original C++ code, chosen for its fast computational power with respect to

high level numerical softwares, such as Mathematica.

It is useful to define some parameters in order to clarify how the al-

gorithm has been implemented. The following subsections concern the

non-trivial input parameters and explain how all the quantities necessary

to the electromagnetic field computation are retrieved.

FWHM

The parameter spatially defining the super-gaussian laser beam is the

FWHM, as depicted in Fig. .. It, quite literally, indicates the transverse

region where the amplitude of the beam is at least half of its maximum. Re-

calling the super-gaussian spatial amplitude profile expressed by eq. (.)

and assuming rotational symmetry in respect to its axis, one can write

σx = σy ≡ σ =
FWHM

2(ln2)
1

2n

. (.)
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t
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t0 t1

x [y]
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FWHM

Figure .: Spatial and temporal form of the incident laser beam.

Time

Assume that t0 and t1 indicate the time at which the field reach, respectively,

the zero and the maximum value within the optical cycle (Fig. .). In

particular eq. (.) can be used to evaluate the time t0 at which the field

of the reflected central ray vanishes at the focus point.

Consider, for simplicity and without losing generality, a monochromatic

laser linearly polarized along the y axis (δ = π
2 ), with A0 = 1. For the electric

field to be null it must be

g
(r)
Ey

sin(kv −ωt) + g(i)
Ey

cos(kv −ωt) = 0 . (.)

Recalling that

g
(r)
Ey

=
1
u
− y

2f

y − yp
u2 g

(i)
Ey

= − y
2f

1
ku

y − yp
u2 (.)

and that we are considering only the central ray, i.e.

x = (dOAD,0, ad
2
OAD) xp = (0,0, f ) , (.)

it can be written

tan(kv −ωt) = −
g

(i)
Ey

g
(r)
Ey

. (.)

The numerator on the right is identically zero thus

tan(kv −ωt) = 0⇒ kv −ωt = nπ , (.)
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and finally, taking n = 0, after substituting the known quantities,

t0 =
1
c

√
d2

OAD +
(
ad2

OAD − f
)2
. (.)

It can also be readily verified that

t1 = t0 +
T
4

= t0 +
π

2ω
, (.)

T being the radiation period, easily retrievable from the laser wavelength

λ provided as another input parameter. Even further, it is possible to

investigate any time point of interest within the optical cycle using the

calculated t0 as reference.

Off-axis angle and f-number

The values of dOAD and f are calculated, as mentioned before, as the

solutions of the system 
θOA = arctan

(
dOAD

f − d
2
OAD
4f

)
AFL = f + d2

OAD
4f .

(.)

The off-axis angle θOA is an input parameter while AFL depends on the

f-number, formally defined as

f /# =
FWHM

AFL
, (.)

Low f-numbers simply indicate short focal, typically used in ion acceler-

ation experiments, while high f-numbers indicate more depth of focus,

which is usually better for electron acceleration.

Another input parameter is the integration domain. Since the Stratton-

Chu integrals are bi-dimensional, the intervals of only the x and y variable

need to be set and are chosen to be 2×FWHM, centered in (dOAD,0).

Finally, the focal plane, i.e. the plane perpendicular to the reflected

beam and centered at focus, consists of a square grid of points which side
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also depends on the f-number. The focused beam waist is taken to be

1.22×λ× f /# and therefore the square size is set to approximately double

the beam waist. The grid sample has a fixed value of 1600 points therefore

the resolution varies with the f-number too.

The proper numerical integration is performed using cubature library.

This library implements a multi-dimensional adaptive integration scheme

based on the algorithm described in [28]. The evaluation of each integral is

stopped when it reaches a relative error of 10−6, i.e. when the computed

error is less than the integral value × 10−6.

All quantities are evaluated in the xyz coordinate system but, since

one is in general interested in study the electromagnetic field along the

longitudinal and transverse directions with respect to the focused beam

propagation direction, it is useful to retrieve them in the XYZ system (see

Fig. .). This can be easily achieved considering a rotation matrix around

the y axis: 
EX

EY

EZ

 =


cosθOA 0 sinθOA

0 1 0

−sinθOA 0 cosθOA



Ex

Ey

Ez

 . (.)

When the code is launched it loads all the previously described pa-

rameters and performs the integrations for each field component ( for

the electric field and  for the magnetic one) for every points on the focal

plane grid. On a commercial Intel-i laptop with Linux based operating

system, each computation typically takes a few hundreds of milliseconds

resulting in approximately 20 minutes per simulation, which is considered

a reasonable amount of time for a full vector diffraction scheme.

. Intra-cycle depolarization

The validity of the model, and its code implementation, described in the

previous sections are generic enough to enable all sorts of different analysis

https://github.com/stevengj/cubature
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concerning the electromagnetic field of a laser beam focused by an OAP. In

addiction to its usefulness in the designing part of the mask presented in

this work, we also employed the simulation code in the investigation upon

the recently discussed phenomenon of polarization loss at a sub-cycle level

for a beam focused by an OAP.

.. Overview

A recent paper by Labate et al. [29] displays the effects of small misalign-

ments on the intensity of a laser beam focused by an OAP, enhancing the

crucial role of the parabola in regard to focal spot quality. This could raise

the question: could the OAP also affect the polarization of the focused

beam?

Recent works [30–32] reported on an experimental setup capable of

characterize a THz beam focused by a 90° OAP with a sub-cycle resolution.

In these studies the authors observed a loss of the original polarization

structure and the formation of anomalous electromagnetic pattern at the

time of the optical cycle at which the fields are supposed to vanish. They

also developed an approximate model capable of predicting the loss of

polarization but the lack of a thorough theoretical approach makes this

model valid only in specific setups.

Actually the idea that the polarization could not be preserved in the

case of off-axis focusing dates back to  [33]. The model presented in

this work predicts a smooth spatial dependence of the polarization in the

focal plane due to an off-axis ellipsoidal mirror. However this statement

only concerned the time averaged pattern of the polarization direction,

without taking into account any sub-cycle behaviour.

The aim of the following simulations is to exploit the comprehensive

theoretical model previously developed and actually show, at a sub-cycle

level, this depolarization effect.
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Table .: Values of the parameters used in the simulations. They are chosen to

be comparable to realistic experimental setups.

Parameter Symbol Value

Wavelength λ 800 nm
Super-gaussian index n 4
Constant amplitude A0 1
Beam extension FWHM 40 mm

.. Simulations

Some parameters are fixed throughout the entire set of simulations and,

for the sake of comparison with a realistic experimental setups, are chosen

to represent the typical laser beam generated in up-to-date facilities. They

are displayed in Tab. . and their role is described in section ..

In order to examine this alleged depolarization effect the idea is to

plot and compare the transverse electromagnetic vector field on the focal

plane at t0 and t1, the time, within the optical cycle, at which the focused

beam has the minimum and the maximum amplitude, respectively (see

Fig. .). More clearly (since this is a pivotal definition in all the following

discussions), t0 is the time at which either the electric and the magnetic

field of the focused beam, as expressed by eqs. (.) and (.), at the

center of the focal plane are supposed to vanish; on the other hand at t1
the fields take on their maximum amplitude. The original polarization

direction δ, the off-axis angle θOA and the f-number f /# are taken to be the

independent variables.

Most of the reported plots represent the behaviour of different fields

in a plane XY orthogonal to the reflected central ray (refer to the coordi-

nate system XYZ shown in Fig. .) where the point (0,0) is the focus of

the OAP. With these assumptions we indicate as transverse electric and
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magnetic field the vectors

Etr = EX +EY (.)

Btr = BX +BY . (.)

Unless otherwise specified, vectors’ amplitude in the vector maps of the

electromagnetic field are normalized to 1, meaning that they are to be

intended as relative to Emax, defined as

Emax ≡maxEtr

∣∣∣
t1
, (.)

i.e. the maximum value of the transverse electric field evaluated at t1.

The same stands for the magnetic field. Moreover, for graphical purpose,

vectors length is set not to be longer than the grid of the focal plane

∆X(= ∆Y ).

Also, recalling that

I ∝ |E|2 , (.)

we will improperly (since we are not accounting for a time dependence)

use the term intensity to refer to the electromagnetic energy density.

As a reference case, and also in order to stress the role of the off-axis

angle, we consider a linearly polarized beam along the x axis, i.e. δ = 0, im-

pinging on a f /2 parabolic on-axis mirror. The resulting transverse electric

and magnetic fields are displayed in Fig. .. The on-axis configuration

shows the expected behaviour: the fields vanish at t0, as mush as 4 order

smaller than the maximum, at most, and, more importantly, they retain the

original polarization.

Consider the same set of parameters as the previous reference case with

the only exception of the off-axis angle, which is now set to be θOA = 40°.

Plots in Fig. . display completely different results which need to be dis-

cussed. Fig. .(b) shows the transverse electric field at t1 of the focused

beam. As expected, due to the original polarization along the x axis, it

is directed in the X direction. In the same way the transverse magnetic

field, perpendicular to the electric one, retain the original direction along



. intra-cycle depolarization 39

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y
 (
μ

m
)

X (μm)

 0
 1x10-5
 2x10-5
 3x10-5
 4x10-5
 5x10-5
 6x10-5
 7x10-5
 8x10-5
 9x10-5
 0.0001

(a) Etr at t0

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y
 (
μ

m
)

X (μm)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

A
m

p
li

tu
d

e 
(a

.u
.)

(b) Etr at t1

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y
 (
μ

m
)

X (μm)

 0
 1x10-5
 2x10-5
 3x10-5
 4x10-5
 5x10-5
 6x10-5
 7x10-5
 8x10-5
 9x10-5
 0.0001

(c) Btr at t0

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y
 (
μ

m
)

X (μm)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

A
m

p
li

tu
d

e 
(a

.u
.)

(d) Btr at t1

Figure .: Transverse electric ((A) and (B)) and magnetic ((C) and (D)) vector

fields at t0 and t1 for δ = 0, f /2 and θOA = 0°. Amplitude is relative to Emax

(definition in text). In the on-axis case it can be seen, as expected, that the fields

vanishes at t0 and that the polarization is preserved.
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the Y axis. Looking at the plots for t0, though, an anomalous effect can be

observed. Both the electric and magnetic field actually vanish only at the

focus point, the central one, while in its proximity a complex, not obvious,

pattern appears. Indeed, considering the electric field, a completely 90°

turn in the polarization can be observed along the Y axis. The field ampli-

tude of this unusual components are, at most, the 3.5 % of Emax, as can be

seen from the color scale of the plots. One could tag it as a negligible effect

but since focusing by OAP is typical of high-energy experiments, where the

polarization also has an important role, it is, at least, an effect to account

for in specific circumstances. Later it will be shown how the magnitude

of this effect depends upon the OAP parameters such as the f-number and

the off-axis angle.

Having established the expected orthogonality between the electric and

the magnetic field, all of the following discussions and analysis will refer,

for the sake of conciseness, exclusively to the electric field. Hence it is

to be inferred that the same conclusions will obviously stand also for the

magnetic field.

At this point, it could be interesting to investigate the behaviour of the

fields in the proximity of t0, meaning the time steps immediately before

and after it. Consider the case with δ = 0, f /2 and θOA = 40°. Indicating

with T the radiation period, two simulations are carried: one at t0 − T /200

and one at t0 + T /200, a time span that, in the studied case, corresponds

to a few attoseconds. The results, always plotted as the vector map of

the transverse electric field at the focal plane, are shown in figs. .(a)

and .(b), respectively. As it can be easily noticed from the figures, the

region where the field actually vanishes describe a sort of sweep along the

X axis. What emerges is that a small neighbour of points in the meridional

plane exists where, at times close to t0, the electric field vanishes; for the

exact instant t0 the field vanishes only at the focal point.

For further analysis, let’s now introduce the concept of Region Of Inter-

est (ROI). It is defined as the region over which the focused beam intensity
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Figure .: Transverse electric ((A) and (B)) and magnetic ((C) and (D)) vector

fields at t0 and t1 for δ = 0, f /2 and θOA = 40°. Amplitude is relative to Emax

(definition in text). At t0 the introduction of an off-axis angle is responsible

for an unusual vector pattern around the focal point (the only one where the

fields actually vanish) where the initial polarization is not preserved. Even if the

amplitude is 2 order of magnitude lower with respect to t1, it is not a negligible

effect due to the energy involved.
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has a magnitude of at least 10 % of the maximum intensity. In other words,

the grid points fulfilling this minimum-intensity requirement are consid-

ered while the others are set to 0. Beside enabling a better readability of the

plots, this selection procedure permits to focus only onto the spatial region

where the unusual field observed at t0 has enough magnitude to potentially

lead to non negligible effects in real-plasma interaction experiments.

It is now easier to estimate other effects due to the OAP focusing. For

instance, it is worth to mention that a longitudinal electric field component

is also appearing at t0. Restricting the attention to the abovementioned

ROI it is possible to plot a density map of the ratio of the longitudinal

component EZ to the transverse component Etr ≡ |Etr| at t0. The map is

displayed in Fig. .(c) and, compared to the top plots of Fig. ., high-

lights the appearance of a longitudinal component in the region where the

transverse component is smaller, except for the neighbour of the central

point.

.. Parametric dependence of the depolarization

The developed model allowed a full numerical characterization of this

depolarization effect, in agreement with the experimental evidence. In

order to generalize the discussion and break free from the single simulation

parameters, we investigate how the unusual field patterns depend upon

the OAP parameters, namely the off-axis angle and the f-number.

To this purpose, the ratio of the square modulus of the electric field

transverse component E2
tr at t0 to the respective quantity at t1 is first con-

sidered. An example of this map, restricted to the previously defined

ROI and with the usual parameters δ = 0, f /2 and θOA = 40°, is reported

in Fig. .(d). Recalling that in the on-axis case the fields almost vanish

across the entire focal plane, it is clear that the effect observed in this map

is specifically a consequence of the OAP focusing properties. Such map is

capable of displaying both the spatial distribution of the anomalous field

and its magnitude, relative to the normal one at t1. From the comparison
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Figure .: The maps on top represent the transverse electric vector field imme-

diately before and after t0 for δ = 0, f /2 and θOA = 40° (same parameters for the

other plots); the amplitude is relative to the maximum transverse field at t1. In (C)

the ratio of the longitudinal electric field component to the transverse one at t0 is

displayed, while in (D) the ratio of the square modulus of the transverse field at t0
to the corresponding value at t1.
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of the maps (here not reported for readability) relative to different off-axis

angles and f-numbers it is evident that these parameters play a role in the

anomalous field properties.

Fig. .(d) makes clear that the relative magnitude of the anomalous

field is not uniform across the ROI. Thus, for a quantitative assessment of

the depolarization dependence upon the OAP parameters, it is necessary to

define a spatially averaged quantity. For instance, consider the integral of

the square modulus of the transverse electric field averaged over the ROI,

using the local intensity as weight; in formula

〈E2
tr〉 =

∫
ROI

E2
trI(X,Y )dXdY∫

ROI
I(X,Y )dXdY

. (.)

It is now possible to define a parameter κ as the ratio of the average

transverse field at t0 to the corresponding value at t1:

κ :=
〈E2

tr〉|t0
〈E2

tr〉|t1
. (.)

In other words, this parameter, from its definition, indicates how important,

how relevant in the a particular configuration, the anomalous field is;

investigating its dependence upon OAP parameters can even lead to the

formulation of some scaling laws.

In particular, running several simulations, letting one parameter at a

time to vary, it is possible to plot the κ parameter as a function of the

off-axis angle (Fig. .(a)) and of the f-number (Fig. .(b)). Fitting the

data with the following scaling laws

κ ∝ (θOA)α (.)

κ ∝ 1
(f /#)β

, (.)

yields, for the polarization along the x axis, α ' 2.79 and β ' 1.68. Fur-

thermore in Fig. .(a) is also highlighted a difference between the two

orthogonal polarization of the incoming beam: in fact, for the y polariza-

tion, the fit yields α ' 2.81. In words, these plots clearly indicate that
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the depolarization effect becomes particularly evident for high off-axis

angle and for tight focusing, which is typically the arrangements needed

in proton acceleration experimental setups. On the other hand, this phe-

nomenon is expected to be negligible for high f-number optics, which are

more commonly employed in LWFA experiments.
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Figure .: Plots and fits of the κ parameter (see the definition in text) depending

upon the off-axis angle and the f-number. The fixed parameters in (B) are δ = 0 and

θOA = 40°. In (A), evaluated for f /2, the difference between the two orthogonal

polarizations is also displayed.



Chapter 3
A simple experimental method for

pulse train generation: theoreti-

cal study

Plasma wakefields in LWFA experiments are typically excited by a single

high-energy ultrashort pulse. This technique has already proven its validity,

delivering accelerated electron bunch with energy up to 8 GeV [2]. However

poor bunch quality, in terms of emittance and energy spread, limits possible

applications of laser-plasma acceleration, e.g. Free Electron Laser (FEL).

Some recently published works [3, 34] turned their attention to Multi-

Pulse Laser WakeField Acceleration (MP-LWFA). This model, obviously

derivative of LWFA, employs a train of lower-energy pulses to resonantly

excite the plasma wakefield, instead of a single high-energy one. The main

requirement for this scheme is to have the subpulses delayed one from the

each other by the plasma period. In the ReMPI scheme, for example, a laser

system capable of delivering such train should operate at a repetition rate

of 100 GHz. Consequently the most efficient and immediate solution is to

generate the pulse train from the single high-energy ultrashort laser pulse

already in use in existing LWFA experiments.

As a simple method of pulse train generation we propose the use of a

47
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delay mask: an optical component, placed on the beam line right before

the last focusing optic, typically an OAP, delaying different parts of the

original beam, that will finally result in a train of pulses at the focal plane

of the OAP, where the target is usually placed.

In this chapter the delay mask is presented, from the initially dismissed

designs to the final model. Geometrical dimensions of the mask depend,

aside from the manufacturing capabilities, on both the spatial and temporal

properties of the pulse train we need to obtain. The spatial characteriza-

tion at the focal plane of the electromagnetic field of each pulse in the

train is provided by the numerical method displayed in chapter . Dis-

persion theory together with Miro software provide instead the temporal

characterization.

. The idea

As mentioned in the first chapter, MP-LWFA is recently getting a renewed

interest since its first theoretical description in the early s [35, 36]. At

the moment the greatest limitation is due to the lack of an efficient and

reliable method of generating a suitable pulse train. Thus, preliminary

tests and experimental proofs of principle of MP-LWFA require the pulse

train to be somehow generated from the single high-energy ultrashort laser

pulse available in classical LWFA experiments.

.. Pulse train generation

In order to better understand the model presented in this thesis, it is

important to briefly discuss previously proposed methods. In the last two

decades the generation of a pulse train from a single laser pulse has been

widely investigated. In addition to the already mentioned laser-plasma

accelerators, other field boosted this line of research such as excitation of

atoms, molecules and solids [37] and radar/microwave communication

technologies [38].
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(a) Picture from [39]. (b) Picture from [40].

Figure .: First proposed logarithmic devices of pulse train generation from

a single laser pulse. In (A) the train results from a sequence of Michelson inter-

ferometers, introducing an adjustable delay via path differences. In (B) the train

comes from an array of subsequent birefringent crystal where the difference in

group velocities for the ordinary and extraordinary polarization state generates

the required delay.

One of the first proposed models was based on stacked Michelson inter-

ferometers [39]. What stacked means is that an initial single pulse impinge

on a first beam splitter, the output of which is redirected to a second one

and so on. The idea is to use both beams from each beam splitter, recombine

them at the end of the Michelson array via polarization multiplexing and

thus obtaining a pulse train with nearly 100 % throughput. The spacing

between each pulse depends on the adjustable path difference of the delay

arms and it is claimed to be ranging continuously from zero to few nanosec-

onds. Fig. .(a) represents an example device providing a train composed

by 16 pulses. As also evident from the figure, such scheme can generate a

train with 2n pulses employing a significant amount of optical elements: n

beam splitter, (4n+ 2) mirrors, 2n linear translators, 1 half-wave plate and

1 thin-film polarizer.

On the same line of logarithmic devices, another model was presented

The term generically refers to the fact that the employment of n devices generates a

train composed by 2n pulses, hence obeying to a logarithmic law.
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in [40], making use of the optical properties of birefringent crystals. These

crystals are characterized by having two orthogonal optical axes with

different refractive indexes, namely ordinary (no) and extraordinary (ne).

A single pulse propagating through such medium is then split into two,

depending on the polarization directions with respect to the optical axes of

the crystal. Thus, for a given thickness x of the material, a temporal delay

∆t resulting from the different group velocities of the two polarizations

(vo for the ordinary and ve for the extraordinary one) can be introduced

between the two pulses such that

∆t = x
(

1
vo
− 1
ve

)
. (.)

Fig. .(b) depicts an example configuration for producing a train of 4

pulses. A linear polarizer at the end of the beam line is needed, despite the

introduction of ∼ 50% energy loss, in order to grant a single polarization

state for the pulse train. With this scheme an array of n birefringent crystals,

each with sequentially doubled thickness, can produce a pulse train of 2n

pulses.

More recently, a technique involving spectral filtering of chirped pulses

has been investigated. In particular in [41] the authors display two setups:

a combination of a Multi-order Wave Plate (MWP) and a linear polarizer,

as a refinement of the work presented in [42], and a single Michelson

interferometer. In the first one, all of the incident energy is used to gener-

ate two, co-propagating pulse trains with a controllable spacing between

them. A chirped linearly polarized pulse is passed through a MWP with

its axes at 45°. The transmitted pulse is then directed to a thin-film Po-

larizing Beam-Splitter (PBS), which reflects (transmits) the parallel (per-

pendicular) polarized components of the pulse. Both components are then

retro-reflected by a pair of mirrors to the PBS. This arrangement yields

two, orthogonally-polarized pulse trains containing all of the initial en-

ergy. The retro-reflecting mirrors in the transmitted arm are mounted on a

translation stage, thus allowing the spacing between the pulse trains to be
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controlled. In the configuration with only one Michelson, spectral filtering

of a chirped pulse can be achieved simply by considering the optical path

difference ∆x. Indeed it causes a phase delay of

∆φ =
2π
λ

∆x . (.)

When the two pulses recombine at the beam splitter, wavelengths for

which the total phase difference is an even integer multiple times π will

be transmitted to the output without any loss. It will therefore convert a

linearly-chirped pulse to a pulse train containing half of the incident energy,

with a temporal profile equal to that of the incident pulse modulated by a

cosine-squared function.

This last setup was implemented in a recent laser-plasma acceleration

experiment [43], in which the Michelson is placed along the beam line

between the final laser amplifier and its vacuum compressor. In this case,

with the compressor set for partial compression, the modulated spectrum

transmitted by the Michelson is partially compressed to a train of pulses,

with a temporal spacing which can be controlled by adjusting the delay

arms of the Michelson and compressor. As claimed in the paper, this was

the first experimental demonstration of MP-LWFA, where the wakefield

was excited by a laser pulse structure which is long compared to the plasma

period. The results shown, together with the ability to deliver the driving

laser energy over many plasma periods, encourage not only the devel-

opment of high-repetition-rate laser systems but indicate also a route to

achieving better accelerated bunch quality in external injection schemes.

The previously described models offer pros and cons but they all share

the need of a fair amount of additional optical elements. From a physical

point of view this isn’t necessarily an issue, albeit requiring particular

attention to the beam quality and characterization throughout the entire

line, but cost-wise it adds a significant amount of expanses the laboratories,

especially the small ones, need to account for. Moreover, from a practical

perspective, the properties of a high-energy ultrashort pulse make the
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alignment process particularly sensitive and time-consuming, scaling of

course with the number of additional optics.

.. The delay mask

The development process of a novel system for generating the pulse train

took its initial steps from the final considerations on the previously de-

scribed models. Furthermore, in the context of the ReMPI scheme (see

section ..) none of them meet the requirements of high efficiency and

reduced amplitude variations among the different pulses of the train. So,

focusing on a cost-effective solution, simple to be implemented in existing

LWFA experiments, and suitable for the ReMPI operational framework,

the choice landed on a delay mask.

More clearly, the idea is to put a passive optical component, with partic-

ular geometrical shape and dimensions (to be later determined), onto the

beam line right before the last focusing element, typically an OAP. This

component should have transverse (with respect to the beam propagation

direction) regions of various thickness. A laser beam impinging on it is

split in the sense that each part emerging from the corresponding region

is temporally separated from the other due to the delay introduced by the

propagation through different material lengths. These transverse sections

of the laser pulse will be finally focused onto the target by the OAP, gen-

erating at the focal region a train of pulses. In summary, we investigate

the feasibility of this simple concept, exploiting the velocity of laser pulse

propagating through matter and taking into account dispersion effects.

. Spatial characterization

The main issue in choosing the transverse shape of the mask concerns the

focused spot of each part of the laser. From now on assume that after

the mask the beam, or rather all of the beam parts, will encounter only

the focusing OAP. In this way the characterization of the spots depends



. spatial characterization 53

θOA
z

x

y f

dOAD

d2OAD
4f

X

Y

Z

Mask

Figure .: Geometrical model for the train simulations. An initial single pulse

impinges onto the delay mask consisting of 4 transverse, with respect to the pulse

propagation direction, sections of different thickness, thus delaying the emerging

parts one from the other. Each of them is then focused by the OAP resulting in a

pulse train at the focal plane.

solely on how these beam parts are focused by the OAP. Since, in principle,

the regions can have any complicated forms it is difficult to analytically

evaluate the focused electromagnetic fields. Thus we employ the full

vector diffraction model presented in chapter  to numerically compute the

intensity map of each part at the focal plane. To this purpose it is necessary

to simulate the focusing of each transverse section individually, setting the

integration domain coherently with the portion of the OAP selected by the

considered section.

In what follows we investigate the generation of a 4-pulses train, mean-

ing that the mask will consist of 4 different sections. In Fig. . a schematic

representation of our idea is shown. The geometric center of the mask lays

always on the optical axis of the incoming beam, which is the same axis

where also the OAP center lays. At this stage we are neglecting the sections

thickness since it is related only to the temporal characterization, which is

later presented. The parameters of the simulations are fixed since the only

variable is the integration domain, i.e. the sections area, and are listed in

Tab. ..
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Table .: Values of the parameters used in the simulations on the focusing of the

different sections of the mask.

Parameter Symbol Value

Wavelength λ 800 nm
Super-gaussian index n 4
Constant amplitude A0 1
Initial beam extension FWHM 40 mm
Polarization δ 90°
Off-axis angle θOA 25°
F-number f /# 



 

x

y

x

z

FWHM

Figure .: The first mask design considered. It is subdivided in quarters and its

extension cover the entire transverse profile of the original beam.

In the next subsection a discussion on early dismissed designs is pre-

sented, with the intention of both underlining the versatility of the simula-

tion model developed and displaying the necessary “flawed” steps in the

development of a new, hopefully useful, technique.

.. Early designs

The first design considered consists of a circle subdivided in its 4 quarters as

depicted in Fig. .. The diameter of the circle is large enough to cover the

entire transverse profile of the incoming beam and every sections evidently

have the same area, thus yielding the same amount of initial energy.

The results of the 4 simulations are shown in Fig. .. The intensity in
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Figure .: Intensity maps of the 4 pulses within the first mask design. The

magnitude in every plot is normalized with the same peak intensity.
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  x

y

x

z

FWHM

Figure .: The second mask design investigated. In this case circular sections of

the same area aim to respect the cylindrical symmetry of the incoming beam thus

obtaining a better spot shape. The maximum diameter is set to FWHM/2 in order

to grant the same energy for each section.

each plot is normalized to the same peak intensity value, found, as expected,

at the center of the plane. The main realization from the intensity plots of

each focused pulse is that the condition of same energy for every section

corresponds actually to the same peak intensity delivered at focus. However

the evident anisotropies between the spatial spots make this design not

acceptable.

The first attempt made clear the importance of keeping a rotational

symmetry, with respect to the incoming beam, in the geometry of the mask.

Therefore the second design investigated consists of 4 concentric regions,

as showed in Fig. .: an inner circle and 3 outer rings. In order to respect

the condition of same energy per section area, the radii of the circular

sections are calculated as

ri =
√
ir , (.)

where i = 1,2,3,4 refers to each circle and r is the radius of the inner

one. For the same reason the total diameter of the mask in this case is

set to be half the FWHM of the beam. In fact, with this assumption, all

the sections correspond to the flat region of the transverse super-gaussian

profile, ensuring an equal amount of energy for each pulse. The obvious

energy loss due to the exclusion of the tails is not relevant at this stage since

we are only interested in the spatial effect of such a design to the focused
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(d) Ring 

Figure .: Intensity maps of the 4 pulses within the first mask design. The

magnitude in every plot is normalized with the same peak intensity.
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  x

y

x

z

FWHM

Figure .: Final design of the delay mask. It retains the properties of the second

design introducing though a hole in the middle in order to mitigate the difference

between the focal spot sizes and allow the pick up of the ionizing pulse in the

ReMPI scheme.

spot. In particular, recalling that FWHM = 40mm, r is set to be 5 mm.

Fig. . reports the results of this second set of simulations. The inten-

sity maps, normalized by the peak intensity at center as before, exhibit

the desired cylindrical symmetry and confirm the relation between peak

intensity and same area per energy. However the plots highlight also an

effect of “apparent” f-number, making the spot size not quite comparable.

Due to the symmetry it is possible, for a better visualization, to plot the

lineout of theX axis, as in Fig. .(a). It is to be noticed that the inner circle

 presents the bigger difference in spot size, while the ones corresponding

to the outer rings are rather similar although diffraction effects seem to

become more important.

.. Final design

As the final iteration of the design process, we modified the second design

by introducing a hole in the middle. This solution has 2 reasons: it takes

care of the inner circle issue and fulfills the requirement of the ReMPI

scheme to obtain the ionizing pulse as part of the original one. In fact the

part of the initial beam corresponding to the hole, hence not interacting

with the mask, can be separately picked up, doubled in frequency and
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Figure .: Intensity lineouts for the rotationally symmetric designs. The condi-

tion of same energy per area still grants the intensity peak to be equal for every

subpulses. In the second design, the “full-body” one, the difference between the

inner circle spot size and the others is quite evident making the final design, with

a hole in the middle, more acceptable in terms of spot size difference and also for

the ionizing pulse pick up.

reinserted in the main line, providing the ionization pulse. However this

aspect is beyond this thesis to be discussed. This final design is depicted in

Fig. .. Besides the presence of the hole, all the previous consideration

on the energy per area still hold in place. The dimensions of the rings are

the same as before, with the addition of the outer ring  having an external

radius of r4 =
√

5r.

In this case we simply report the intensity lineout of the 4 subpulses in

Fig. .(b). As expected it summarizes all of the previous observations:

• pulse sections with an equal amount of energy per area provide the

same peak intensity when focused;

• rotationally symmetric sections turn out to retain a symmetric (bell-

shaped) spot size at the focal plane;
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• ring-shaped sections have comparable spot size, despite stronger

diffraction effects.

On a lesser positive note, it is worth noticing that the diffraction due

to the ring geometry introduces a significant energy loss. The central spot

of the focused pulses retains only a 10 to 20 % (depending on the radius)

of the energy carried by the corresponding initial ring pulse. However the

loss can be taken into account and experimentally compensated with a

higher-energy initial pulse.

Further simulations, not reported in this thesis for conciseness, with

higher f-number (which is usual in LWFA experiments) showed no differ-

ence in either energy loss or focal spot size variations. That is why the most

attention has been devoted to the mask geometry, which is clearly the main

responsible for the spatial characterization of each pulse of the train.

This preliminary analysis, made possible by the flexibility of the devel-

oped simulation model, displays the, otherwise difficult to grasp, relations

between the transverse shape of the different sections of the delay mask and

the spatial properties of the focal spot of the corresponding subpulses. It is

important to notice that these results are strictly related to the imposed,

relatively arbitrary, conditions; working in parallel with plasma simulation

can underline which one of these properties is most important or which

are the best conditions to match in terms of plasma wakefield in order to

refine the mask.

. Temporal characterization

As shown, the transverse structure of the mask and its sections are related

mainly to the focal spot quality. The temporal aspects of the pulse train

instead concern the thickness of them and the medium optical properties.

The main requirement for the pulse train in a MP-LWFA scheme is to

have each pulse delayed from each other by a plasma period in order to

resonantly excite the plasma wakefield. This, applied to the mask, means
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

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Figure .: The optical path difference ∆d, corresponding to the sections thick-

ness, of a subpulse propagating in vacuum with respect to the one in the medium

is responsible for the delay between each subpulse. This delay should match the

plasma period for MP-LWFA purpose.

that a subpulse emerging from one section should be delayed of a plasma

period with respect to the one emerging from the adjacent section. In other

words, for a given thickness ∆d, the difference in group velocities between

a subpulse propagating in the medium and the adjacent one propagating

in vacuum introduces a delay ∆t given by

∆t = ∆d

(
1
vg
− 1
c

)
(.)

that should, in fact, be made to match the plasma period.

In order to estimate the sections thickness it is necessary to recall the

definitions from chapter  of plasma period and group velocity. The former

can be readily deduced from the plasma frequency as

Tpe =
2π
ωpe

=
2π√
nee2

meε0

, (.)

where ne, e and me are the density, the electric charge and the mass of the

electrons respectively and ε0 the permittivity of free space. The group

velocity of a pulse propagating through matter, as already retrieved in

the context of linear dispersion, is written, specifying the wavelength

dependence upon the refractive index of the medium, as

vg =
c
n

1

1− λn dn
dλ

, (.)
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Table .: Dispersion parameters for different types of glass at 800 nm wave-

length.

Material n dn
dλ (µm−1) GVD (fs2 mm−1) TOD (fs3 mm−1)

Fused Silica 1.453 −0.017 36.16 27.47

N-LakL 1.633 −0.025 61.40 41.42

N-SF 1.711 −0.050 156.52 102.52

N-BK 1.511 −0.020 44.65 32.10

where c is the speed of light, n the refractive index of the material, λ

the central wavelength of the pulse and dn
dλ is the chromatic dispersion.

The value of this last parameter (and also high order dispersion terms)

is typically tabulated for any optical material depending on the central

wavelength considered. For example in Tab. . different types of glass are

listed with their optical parameters valid for a wavelength of 800 nm.

Finally, substituting in eq. (.) the expression for the group velocity

and considering ∆t ≡ Tpe, the difference of thickness between two adjacent

sections can be written as

∆d =
cTpe

n
(
1− λn dn

dλ

)
− 1

. (.)

From now on, it is necessary to relate to a realistic scenario, or at least

consider a typical experimental setup in order to provide a deeper analysis.

Only in this way it is possible to evaluate the order of magnitude of the

phenomena involved and explore the actual feasibility of the delay mask.

Upon the plasma properties, the initial electron density is the only

parameter needed to calculate the plasma period. In LWFA experiments,

where the target of the laser pulse is usually a gas-jet, electron density is

of the order of 1018 cm−3. Hence considering ne = 1× 1018 cm−3 one gets

Tpe ' 111fs.

The choice of the material the mask is made of was obviously taken to be

the least impactful on the pulse properties, mainly in terms of GVD. Hence,
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Figure .: A D rendering of the delay mask.

from Tab. . it is clear the advantage of employing fused silica glass. So,

considering an operational wavelength of 800 nm for the original laser

pulse and using the dispersion parameters of fused silica, from eq. (.)

one finally gets ∆d ' 71µm.

This thickness difference, analytically calculated, could seem difficult

to obtain in reality, given its order of magnitude and the precision required

by these kind of laser pulses. However, (after a preliminary check with a

specialized company) it is possible with modern manufacturing technology

to produce self standing fused silica slabs with a minimum thickness of

500 µm. This means, in regard to the design of the delay mask, that the

biggest outer section (namely the ring  in Fig. .) must have a thickness d

of (at least) 500 µm but the other rings can be fused (or carved) on it. Since

the delay between the pulses depends solely on the difference between

sections thickness, the addition of a wide “base” is not an issue. However,

the presence of a bigger quantity of material to be passed through by the

laser pulse, can enhance the dispersion effects.

Once determined the actual thickness of each ring (reported in the

second column of Tab. .) and acknowledging the “unplanned” additional

base, a deeper analysis is necessary to assess dispersive effects. Hence the

propagation of the laser pulse through the different sections of the mask
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Table .: Duration of pulses in the train. Considering an initial pulse with a

duration of 30 fs, it is reported the GVD-related time broadening of each pulse

of the train emerging from the respective ring. The fourth column shows the

duration broadening for an initial pulse with a −1× 1027 s−2 frequency chirp.

Ring Thickness (µm) FWHM (fs) FWHMc (fs)

 713 38.5 35.6

 642 37.2 34.6

 571 36.0 33.7

 500 34.8 32.8

was simulated via Miro [44], a powerful software for high-energy pulse

amplification and propagation. In particular, in these simulations the

quasi-D numerical scheme was employed and nonlinear and dispersive

(up to the second order) effects were taken into account. The idea is to

carry 4 different simulation runs, one for each ring, where a single pulse

pass through a fused silica plate of the appropriate thickness. As well

as the temporal properties were neglected in the spatial characterization,

these simulations concern ideally the temporal description of a “single” ray

which can then be extended to the transverse profile of each ring.

The original pulse is defined by the usual wavelength of 800 nm, an

energy of 1 J and a duration, expressed as FWHM of the Gaussian enve-

lope, of 30 fs while the dispersion parameters of fused silica are listed in

Tab. .. The main result to consider, and the most relevant one, is the time

broadening, due to both linear dispersion and GVD, that is the duration,

still evaluated as the FWHM, of each subpulse after passing through the

corresponding ring of the mask. The results are reported in the third col-

umn of Tab. .. As it can be seen, the thinner section (ring ) introduces a

nearly-5 fs and furthermore a difference in duration between the subpulses

emerging from the inner ring () and the outer one () of approximately

10 % arises as a consequence of pulse propagation. Preliminary plasma
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simulations show that this broadening is utterly acceptable in terms of

wake excitation.

However, pulse propagation theory shows that it is also possible to

mitigate the pulse duration broadening via the use of an initially chirped

pulse. For instance, introducing a negative chirp of 1027 s−2 as an input

parameter for the Miro simulations results in the durations reported in the

fourth column of Tab. .. Clearly this second set of results seem more

suited for the experimental implementation but the main objective of this

work is to stress out the different viable possibilities offered by the delay

mask, deferring to further comprehensive plasma simulations the “burden”

of selecting the most appropriate conditions for MP-LWFA.

The reported results already suggest a low impact of the nonlinear

effects occurring in the pulse propagation. As a final check, though, on

the acceptability of this model, the B-integral is retrieved from the Miro

simulations. This quantity is defined as

B =
2π
λ

∫
n2I(x)dx , (.)

where I(x) is the intensity along the beam axis of propagation x and n2 is the

nonlinear index. Recalling that n2I is the nonlinear change in the refractive

index, B-integral represents the total nonlinear phase shift accumulated

by the beam through propagation into the medium. Therefore it serves as

an indicator of the relevance of nonlinear effects in the system considered:

values larger than the unit suggest such relevance which can manifest itself

by means of self-focusing, destructive, phenomena. The Miro estimated

B-integral for every run of simulations was of the order of 10−1, thus

confirming that the dimensions considered for this model can be safely

tolerated in any practical situation.





Conclusions

The entire process of designing an optical component, including motivation,

specifications, concept and modeling, has been presented in this thesis. A

set of different tools and skills have been employed, taking all the necessary

steps starting from the development of a thorough theoretical framework

not yet presented, to our knowledge, in literature. Continuing with the

development of an original code retaining the generality and flexibility of

the theoretical model.

A deep analysis of a phenomenon regarding sub-cycle depolarization

for laser beam focused by OAP has also been provided, validating and

integrating experimental measurements of anomalous fields presented by

other researchers. Future prospects are to include a better knowledge of

the temporal dynamics.

And finally an intensive study on the characterization of the spatial

and temporal profile of a pulse train generated by means of a delay mask

has been carried, employing both our original simulation model and a

third party software. As discussed, the proposed solution for pulse train

generation based on a delay mask has some limitations concerning the

focal spot size, but is simple and easy to implement experimentally and is

foreseen as a possible option for preliminary tests on the resonant multi-

pulse wakefield generation.
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Acronyms

AFL Apparent Focal Length

CPA Chirped Pulse Amplification

CW Continuous-Wave

FEL Free Electron Laser

FWHM Full Width at Half Maximum

GVD Group Velocity Dispersion

LWFA Laser WakeField Acceleration

MP-LWFA Multi-Pulse Laser WakeField Acceleration

OAP Off-Axis Parabola

ReMPI Resonant Multi-Pulse Ionization injection

ROI Region Of Interest

TNSA Target Normal Sheath Acceleration
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