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Summary

A supersolid is a paradoxical phase of matter proposed more than 50 years ago, which
displays simultaneously two different types of order in the same single component material
– solid order and superfluidity. In a seminal work of 1970, the physicist A. J. Leggett
showed that a supersolid presents a superfluid fraction necessarily lower than unity even at
zero temperature, originating from the breaking of translational symmetry. In particular he
derived an upper limit for the superfluid fraction, and proposed an experimental procedure
to observe it, by measuring a reduction of the moment of inertia under slow rotations.

Non-classical rotational effects have been searched for decades in a peculiar solid system,
solid helium, where the zero-point motion of atoms is so large that was presumed to
create a stable Bose-Einstein condensate of zero-point vacancies. Despite extensive efforts,
experimental verification of supersolidity in solid helium has remained elusive. In 2019,
the CNR-INO/LENS experimental team, where I performed this thesis work, discovered
a supersolid phase in a dipolar BEC with strongly magnetic Dy atoms. The main idea
is that for a peculiar regime of strong dipolar interactions the system forms an array of
overlapped quantum droplets, establishing mutual coherence and breaking translational
invariance, while remaining globally superfluid. So far, the superfluid nature of dipolar
supersolids has been tested through the study of excitation modes not related to rotations.
In particular no experiments have measured its superfluid fraction, in the spirit of the
original experiments proposed by Leggett and realized (unsuccessfully) with solid helium

In this thesis I study experimentally the fate of the rotational moment of inertia in a
supersolid of dipolar dysprosium atoms. In particular, I show that, as expected by Leggett
in his original work, a dipolar supersolid features a reduction of the rotational inertia
and maintains a finite superfluid fraction. This is done by studying a peculiar collective
excitation already employed for probing superfluidity in standard superfluids: the scissors
mode. This mode is a small-angle rotational oscillation in an elliptical harmonic potential.
To achieve the necessary experimental conditions to excite and study the scissors oscillation
in the supersolid regime, I upgraded the existing experimental setup, implementing new
optical potentials for trapping and manipulating the atoms, thus realizing the excitation
scheme. From the measured moment of inertia, I infer a superfluid fraction that is different
from zero and of order of unity, providing direct evidence of the superfluid nature of the
dipolar supersolid. Finally, I compare the measured superfluid fraction with Leggett’s
prediction for our system, finding agreement within an order of magnitude.

3





Contents

Introduction 7

1 On the supersolid phase of matter 11

1.1 Order in a supersolid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.1 Order in a solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Order in a superfluid . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.3 Supersolids: state of the art . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Non-classical rotational inertia as probe to superfluidity . . . . . . . . . . . 18
1.2.1 Non-classical rotational inertia . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 NCRI and superfluid fraction . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 Superfluidity and topology . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.4 NCRI in a supersolid . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 From Bose-Einstein condensation to supersolidity 27

2.1 Dipolar quantum gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 Bose Einstein condensation . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Role of the interactions . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.3 Mean-field description . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.4 Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Dipolar supersolid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Roton instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Quantum fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 Phenomenology of a dipolar supersolid . . . . . . . . . . . . . . . . 41

2.3 Collective oscillations as probe to superfluidity . . . . . . . . . . . . . . . 44
2.3.1 Elementary excitations of a superfluid . . . . . . . . . . . . . . . . 45
2.3.2 The scissors mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.3 Non-classical rotation inertia and scissors mode . . . . . . . . . . . 49

3 Obtaining a dipolar supersolid 53

3.1 Dysprosium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Light-matter interaction . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Obtaining quantum degeneracy . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Observation of a dipolar supersolid . . . . . . . . . . . . . . . . . . . . . . 61

5



3.3.1 Supersolid production . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Supersolid analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Lifetime of a dipolar supersolid . . . . . . . . . . . . . . . . . . . . 64

4 Observation of NCRI in a dipolar supersolid 67

4.1 Exciting the scissors mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Choice of experimental parameters . . . . . . . . . . . . . . . . . . 68
4.1.2 Excitation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Analysis procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.1 Scissors analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Finite temperature analysis . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Rotational inertia and superfluid fraction . . . . . . . . . . . . . . . 76
4.3.2 Comparison with Leggett’s model . . . . . . . . . . . . . . . . . . . 78

Conclusion 81

Bibliography 83

6



Introduction

A supersolid is a new counterintuitive phase of matter, which displays simultaneously two
different types of order in the same single component material – solid order and superflu-
idity. In other words, in a supersolid the particles composing the rigid solid structure are
not localized in a single lattice site but, can tunnel from one site to the others, flowing
without friction.

The supersolid state of matter was firstly proposed by the physicists Andreev & Lifshitz
[1] in solid helium, where the zero-point motion of atoms is so large that was presumed to
create a stable Bose-Einstein condensate of zero-point vacancies [2], realizing a system solid
and superfluid together. For decades the helium community has searched for signatures of
superfluidity in solid He. In particular, in 1970 A. J. Leggett suggested an experimental
procedure, the torsion oscillator experiment, to probe superfluidity in a solid system, by
measuring a reduction of its moment of inertia under slow rotations [3]. In addition he
suggested the lowering of the superfluid fraction of the supersolid when put into slow
rotation in an annular geometry.

Despite extensive efforts, experimental verification of supersolidity in solid He has re-
mained elusive. In 2004 Kim & Chain reported an observation compatible with the non-
classical rotational effect in a sample of solid He [4]; however their results have been refuted
by subsequent analysis [5]. The consensus is now that the possible superfluid fraction of
bulk solid He is below 10−4 [6].

The idea behind these experiments was to look for superfluidity in a system that is
naturally solid, like solid He. The achievement of Bose-Einstein condensation (BEC) of
neutral atoms in 1995, has given the possibility to face the supersolid problem from another
point of view. Atomic BECs are naturally superfluid systems whose interparticle interac-
tions can be manipulated in various ways. Instead of looking for superfluidity in solids,
scientists have studied ways to imprint a density modulation on a natural superfluid. In
2019, the CNR-INO/LENS experimental team, who have supervised this thesis, discovered
a supersolid phase in a dipolar BEC with strongly magnetic Dy atoms [7]. The main idea
was to employ the anisotropic and long-range character of the interparticle interactions for
imprinting a solid-like density modulation on the superfluid system [8]. In a pioneering ex-
periment, they could spot a small range of parameters where a coherent, density-modulated
state exists, thus presenting the ingredients required for a one-dimensional supersolid. The
phenomenon is quite robust; it appears for different atomic species (different Dy and Er
isotopes) and for different parameter values [9, 10].

So far, the superfluid nature of the supersolid has been tested through the study of

7



excitation modes not related to rotations, which can be described in terms of the hydrody-
namic equations for superfluids [11, 12, 13]. In particular no experiments have measured
the superfluid fraction of the dipolar supersolid, in the spirit of the original experiments
with solid Helium.

The objective of this thesis is the implementation of an experiment measuring non-
classical rotational effects when a dipolar supersolid is put into rotation, thus estimating its
superfluid fraction. In the experiment we employ a specific rotation technique that fits the
asymmetric, small-sized systems available in the laboratory. We excite a peculiar collective
excitation, the scissors mode, a small-angle rotational oscillation in an elliptical harmonic
potential that naturally holds the system. This technique, inspired by an excitation mode of
nuclei, has been proposed and employed [14, 15] to demonstrate superfluidity of ordinary
BECs. We study the modification of the scissors mode frequency across the transition
from the BEC to the supersolid regime, so we can directly compare the supersolid with a
fully superfluid system. From the measured frequency, we determine a reduced moment
of inertia in both regimes, implying superfluidity of the supersolid. Next, we define a
superfluid fraction specific for our system, in analogy with Leggett’s prediction.

The thesis is organized as follows:

• In Chapter 1 we present the theoretical overview of the supersolid state of matter,
with peculiar interest in its superfluid character. In the first part I discuss the char-
acteristics that define a supersolid, starting with the solid and superfluid order. After
an historical overview I illustrate the current state of the art of supersolids. In the
second part, I will focus on its superfluid character, by firstly enunciating the prop-
erties that a wave function needs to have to show NCRI, introducing a topological
demonstration for the manifestation of superfluidity. Finally, we introduce Leggett’s
argument that gives an upper limit for the superfluid fraction of supersolids.

• Chapter 2 is devoted to present the Bose-Einstein condensation of a dipolar quantum
gas, its characteristic (long-range) interactions and Feshbach resonances, as well as
its main excitations and instabilities. Then, we will introduce the main theoretical
ingredients in order to obtain a dipolar supersolid from a dipolar quantum gas, and
we will report on its first experimental observation. Finally, we will briefly discuss
the collective excitations of a trapped superfluid as possible probes of superfluidity.
In particular, we will focus on the scissors mode oscillation.

• In Chapter 3, we present the experimental ingredients to obtain a dipolar supersolid.
We will first introduce the main characteristics of 162Dy, the strongly magnetic ele-
ment we use to produce a dipolar supersolid. Then we will give a short introduction
to the cooling techniques employed to achieve a BEC of Dy atoms, and the experi-
mental strategy implemented to obtain a dipolar supersolid. Finally, we will explain
how we fit the supersolid, and its main characteristics, such as its lifetime.

• Chapter 4 presents the central results of this thesis: the measurement of the scissors
frequency and of the moment of inertia of a dipolar supersolid. First I discuss the
methods employed to excite the scissors mode of a BEC and a SS in order to unveil
their superfluid behavior. We analyze the time-of-flight images to get information on
the shape evolution and the scissors frequency of the gas. We also perform a thermal
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analysis of the scissors mode in the BEC regime to confirm its superfluid character,
to then focus on the modification of the scissors mode frequency across the transition
from BEC to the supersolid regime.

Finally, I give some conclusive remarks and an outlook on future experiments.

The results presented in this Thesis have been the object of one article, reference [16],
submitted to Science in December 2019.
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Chapter 1

On the supersolid phase of
matter

This chapter is divided in two parts. In the first part I will discuss the main characteristics
that define a supersolid, starting with the definitions of the order in a solid and in a
superfluid. Then, after a brief historical introduction with particular interest in helium, we
will give the state of the art of supersolidity. In the second part we will focus on a peculiar
phenomenon which defines the equilibrium properties of a superfluid: the occurrence of
non-classical rotational inertia (NCRI) when put into rotation. We will enunciate the
properties that a wave function needs to have to show NCRI, introducing a topological
condition for the manifestation of superfluidity. We will finally use the NCRI effect to
estimate the superfluid fraction of a supersolid system. Following an argument by Leggett,
we will find an upper limit for NCRI. In particular we will focus on the experimental
possibility to relate the NCRI phenomenon to the superfluid fraction.

1.1 Order in a supersolid

Supersolidity is a counterintuitive, macroscopic manifestation of quantum mechanics: ow-
ing to quantum physical processes, a supersolid is expected to display simultaneously two
different types of order in the same single component material – solid order and superflu-
idity. In other words, in a supersolid the particles composing the rigid solid structure are
not localized in a single lattice site but, can tunnel from one site to the others, flowing
without friction. In the following I will discuss in detail the solid order and superfluidity.

1.1.1 Order in a solid

A solid is a phase of matter characterized by structural rigidity and resistance to a force
applied to the surface. Its atoms are bound to each other, either in regular configuration,
forming crystals, or irregularly, as occurs in glasses. Here we will focus on crystals. The
fundamental property of a crystal is the periodicity of the local density ρ(r), which deter-
mines the probability to find one particle at position r. If one translates a gas or a liquid
(or in general a system that does not brake translational invariance) by any vector one
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On the supersolid phase of matter

statistically found the same configuration of particles, that is ρ(r) remains unchanged. In
a crystal, this is true only for a discrete sets of vectors T, and one speaks of translational
symmetry breaking of the system [17].

In order to identify the symmetry let us define the local density variation from the
averaged value δρ(r) ≡ ρ(r) − 〈 ρ 〉. In a homogeneous fluid ρ(r) = 〈 ρ 〉 thus δρ(r) = 0.
Instead for a crystal δρ(r) does not vanish identically and the order is expressed through

δρ(r) = δρ(r + T) (1.1)

where T sets the lattice periodicity. The condition expressed in equation (1.1) is named
density long-range order (LRO). The vector T is the order parameter of the crystal, a
quantity that defines the order.

An important point is that condition (1.1) occurs spontaneously in a solid, as a result
of the interactions among elementary constituents, at specific thermodynamic conditions.
Such a spontaneous breaking of translational symmetry is an integral part of the definition
of solid, and it has two main consequences. The first one is that a crystal is macroscopically
rigid, that is the system obtains the property of resistance to shear, which fluids do not
possess. The second consequence is that a new kind of excitations arises, the so-called
Nambu-Goldstone modes. In a crystal these modes manifest as vibrations of the lattice.
This waves also referred to as phonons, play a major role in the physical properties of the
crystal, for example determining its thermal and electrical conductivity.

1.1.2 Order in a superfluid

The concept of superfluidity does not describe a single phenomenon but a complex of
phenomena that normally occur in conjunction, all of them related to the flow properties
of the system [18]. A superfluid flows with zero viscosity: it flows through thin capillaries
without apparent friction (generating a “superleak”) and can flow in the form of a thin
film over a rim of the bucket containing it; it has effectively infinite thermal conductivity;
it also shows the phenomenon of persistent currents, i.e., a current once started in a ring
is metastable and does not decay over time (astronomically speaking). It is now clear that
the occurrence of superconductivity is a frictionless flow of charged particles.

However, superfluids show their most spectacular properties when put under rotation.
When the angular velocity of the rotating container is small, a superfluid shows a moment
of inertia smaller than a classical system: this phenomenon has been called non-classical
rotational inertia (NCRI), and is one of the most striking manifestations of superfluidity.
The NCRI phenomenon is different from that of frictionless flow, where the superfluid
does not rotate because no energy is transferred from the container to the system. The
occurrence of the NCRI effect tells that, for low velocities, no angular momentum can be
carried by the ground state of a rotating superfluid. When instead the angular velocity is
large, also superfluids can carry angular momentum, but in the form of quantized vortices.
This effect has been measured for the first time in 1967 by Hess & Fairbank in a famous
experiment where a sample of liquid helium rotating in a cylindrical container, was cooled
through the lambda temperature [19].

The first superfluid discovered in nature is helium: below the lambda transition liquid
helium becomes superfluid (helium II). In this sense the system can have a thermal (normal)
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1.1 – Order in a supersolid

Figure 1.1: Two-fluid model: Here is showed the lambda transition at Tλ = 2.17 K
between He I/He II and the behaviour of fn and fs with T. In this model a superfluid has
two different components: the normal component (with fraction fn) behaves as a normal
fluid, and the superfluid component (with fraction fs) carries no rotational inertia.

component and a superfluid component

ρ(r) = ρs(r) + ρn(r) (1.2)

The superfluid component carries zero inertia and zero entropy while the normal compo-
nent is subject to the classical laws of physics. In figure 1.1 it is illustrated the trend of
the two components with the temperature for He II. Nowadays it is known that in neutron
stars there is a superfluid flow, or ultracold quantum gases are other realizations of super-
fluid systems.

A wealth of theoretical and experimental work, spanning now over several decades, has
afforded a satisfactory theoretical understanding of the microscopic origin of superfluidity.
It is now understood that superfluidity in three dimensions is a macroscopic manifestation
of Bose-Einstein condensation of a large number of bosons [17]. When superfluidity appears
in a system of identical fermions, condensation occurs via the creation of pairs of fermions
- the Cooper pairs - which mechanism is described in the BCS theory. The occurrence of
superfluidity in less than three dimensions is possible without the presence of condensation.
Indeed in two dimensions, the condensation is forbidden according to the Marming-Wagner

theorem. However, a system of bosons can manifest a superfluid character above the
Berezinskii-Kosterlitz-Thouless transition.

The BEC consists of the macroscopic occupation of one single-particle quantum state
- the ground-state - by a large fraction of all N particles of the system. If we consider the
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On the supersolid phase of matter

Figure 1.2: Gauge U(1) symmetry: Above Tc the phase ϕ is not defined and the system
is symmetric. Below Tc the system creates the typical mexican hat potential and the system
falls in one of the possible states between 0 and 2π, breaking the gauge symmetry.

one-body density matrix
n(r, r′) = 〈ψ̂†(r) ψ̂(r′)〉 (1.3)

where the field operators ψ̂†(r) and ψ̂(r) are the creation and annihilation particles oper-
ators at position r. It represents the probability to annihilate a particle at position r and
to simultaneously create it at position r′. A large single state occupation number means

n(r, r′) → n0 as |r − r′| → ∞ (1.4)

where n0 is the fraction of particles that occupy the ground state: the condensed frac-
tion. This statement implies that a macroscopic system in which a particle is removed at
position r has a finite quantum-mechanical amplitude over a system where is removed an
identical particle at an arbitrarily large distance away from r. When this occurs it is said
of off-diagonal long-range order (ODLRO). In short: particles are indistinguishable and
completely delocalized over the sample.

Even though BEC and superfluidity are intimately related phenomena, condensed frac-
tion should not be confused with the superfluid fraction fs = ρs/ρ. For example in the
superfluid liquid Helium, where interactions are strong, the condensed fraction is approx-
imately 8% even at T = 0, while the superfluid fraction is 100%. On the other hand in
BEC of weakly interacting particles, n0 corresponds to the superfluid fraction and at T=0
approaches the value of 100 %.

In a BEC the particles behave collectively as a complex classical field. A classical
field means that it is possible to describe the system with a complex order parameter
Ψ(r) = f(r) exp[iϕ(r)], whose modulus f and a phase ϕ are related with the density of the
atoms in the BEC, n = |f |2 and their velocity v ∝ ∇ϕ. In this sense, the Bose-Einstein
condensate transition spontaneously breaks the gauge U(1) symmetry. When a system has
a U(1) symmetry, the absolute value of the phase of the quantum state is irrelevant, but
only phase differences have a physical implication. Therefore it is invariant by any change
of the phase. In figure 1.2, at the left, the quantum state (represented as a blue ball) is
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1.1 – Order in a supersolid

in the center, thus symmetric under rotation. We have seen that in a superfluid the phase
ϕ must be defined in the order parameter Ψ, therefore the system must choose a defined
phase (on the right in figure 1.2 the blue ball is in a defined position outside the center).

Like in crystals the consequences of a broken symmetry are the imprints of a generalized

rigidity and the appearance of new excitations. The superfluid rigidity is the stiffness to
excite a single degree of freedom of the ensemble, which manifests macroscopically as its
superfluid character. The new excitation appears when the superfluid is excited at low
momentum. It is created a density wave - a phonon - that propagates through the system
making oscillates similar to a solid.

1.1.3 Supersolids: state of the art

The supersolid phase of matter displays simultaneously the two types of order already dis-
cussed in 1.1. The first theoretical proposals suggesting the existence of such a paradoxical
“superfluid quantum crystal”, appeared 50 years ago [1, 2, 3]. The physical system that
the scientists had in mind was solid helium, where the zero-point motion of atoms is so
large that was presumed to create a stable Bose-Einstein condensate of zero-point vacan-
cies, realizing a system solid and superfluid together (figure 1.3). For decades the helium
community has searched for signatures of superfluidity in solid He. In particular, in 1970
A. J. Leggett suggested an experimental procedure to probe superfluidity in a solid system,
by measuring a reduction of its moment of inertia under slow rotations [3].

Despite extensive efforts, experimental verification of supersolidity in solid He has re-
mained elusive [6]. Following the original suggestion by Leggett, in 2004 Kim & Chain
reported on an observation compatible with non-classical rotational effects in a sample
of solid He [4]. The experimental set-up consists of a torsional oscillator containing a
cylindrical cell filled with solid He (figure 1.4.a). The period τ of the oscillator is related
to the rotational inertia I through the relationship τ = 2π

√

I/K, where K is an elastic
constant determined mainly by the rigidity of the rod. They reported a decrease of the
period oscillation below a temperature of the order of 100 mK, with a shift proportional
to the temperature (figure 1.4.b). Despite the phenomenon was initially attributed to
the presence of a finite superfluid fraction, their results have been refuted by subsequent
analysis, relating the period oscillation decrease with an increase of the elastic constant K
[5]. The consensus is now that the possible superfluid fraction of bulk solid He is below
10−4 [6, 17, 20]. The helium community is now studying the behavior of a He monolayer
on graphite, which had been suggested to support supersolidity, and is indeed showing
interesting signals [21], although there is an ongoing debate about its real nature.

The idea behind these experiments was to look for superfluidity in a system that is
naturally solid, solid He. In 1995, the physicists Ketterle, Wieman, and Cornell achieved
Bose-Einstein condensation (BEC) in atomic gases, realizing for the first time a system
which is naturally superfluid and where the inter-particle interactions can be manipulated
in various ways. As a result, the supersolid problem has been approached from another
point of view: instead of looking for superfluidity in solids, scientists have studied ways
to imprint a density modulation on a natural superfluid. The majority of the proposals
appeared in the last 20 years deal with BECs with some special kind of inter-particle
interactions, providing a characteristic length-scale at which the energy of the BEC is
minimized by an emergent solid-like density modulation. Few examples are Rydberg atoms
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On the supersolid phase of matter

Figure 1.3: Quantum tunneling of vacancies. In the original model of supersolidity, the
number of atoms is less than the number of lattice sites. The lattice thus contains vacancies
(red circles), which are able to exchange their positions with neighbouring atoms (blue
dots) so easily that they are delocalized throughout the whole system. These vacancies are
bosons, which at low temperatures may form a Bose–Einstein condensate. As a result, the
atoms themselves are not localized at particular sites as in a classical lattice. Some of the
mass can flow without friction through the rest, which remains a rigid solid. Taken from
[6].

[22], cavity-coupled gases [23], spin-orbit coupled systems [24], and dipolar gases [8, 25].
In 2017 Ketterle and Esslinger reported the creation of an ultracold quantum gas with

supersolid properties. Esslinger placed a Bose-Einstein condensate inside two coupled
optical cavities, and the gas acquired modulation without losing its superfluidity [26].
Ketterle instead used the coupling between an external field and an intrinsic property of
the atoms, the spin-orbit coupling, to create a periodic interference between them, hence
the characteristic modulation of the wave function [27]. However, in both systems the
inter-atomic interactions are mediated by a light field; as a result, the emerging lattice
structure is rigid and cannot carry elastic waves [28], preventing the non-trivial coupling
between liquid and solid characters.

Better candidates for supersolidity are BECs of magnetic atoms with strong dipole-
dipole interactions [8]. When a magnetic BEC is confined in the direction of polarization
of the dipoles, the interplay of dipolar and contact interactions gives rise to a roton mini-
mum in the dispersion relation, introducing a natural length scale for self-organization [8].
Seminal experiments have recently observed the roton spectrum [29], the roton instability
[30] and the formation of quantum droplets arrays in the post-instability dynamics [31].
These droplets, also observed in mixtures of BECs [32, 33], are however typically strongly
bound due to the competition of mean-field interaction and quantum fluctuations [34].
Therefore, they lack the mutual coherence necessary for a supersolid [35].

In 2019, the CNR-INO/LENS experimental team, who have supervised my theses, dis-
covered a supersolid phase in a dipolar BEC with strongly magnetic Dy atoms. The main
idea was to find an interaction regime of extremely weakly bound droplets, in order to
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1.1 – Order in a supersolid

Figure 1.4: Torsion oscillator experiment: a) Typical setup of the torsion oscillator
experiment carried by Kim & Chain. b) Left: Below a certain critical temperature, they
observed a reduction of the period of oscillation τ , indicating the presence of the NCRI
effect. The period is proportional to τ ∝

√

I/K, with I the inertia and K the elastic
constant of the solid. Right: The respective (supposed) superfluid fraction for different
angular velocities. It has been pointed out afterward that the decrease of the oscillation
period is a consequence of the hardening of the crystal (an increase of K) and not to the
NCRI effect (decrease of I). Taken from [6].

increase their capability to overlap and establish mutual coherence. In a pioneering exper-
iment, they could spot a small range of parameters where a coherent, density-modulated
state exists, thus presenting the ingredients required for a one-dimensional supersolid [7].
Rapidly, these findings have been replicated by other experiments [9, 10], raising a lot of in-
terest in the scientific community. The phenomenon is quite robust; it appears for different

17



On the supersolid phase of matter

atomic species (different Dy and Er isotopes) and for different parameter values. The life-
time is of the order of 100-200 ms, long enough to allow further experimental investigation
of the properties of supersolids.

What sets dipolar supersolids apart from the previous experiments is that no external
influence is needed to generate the density modulation, but it naturally arises from the
inter-atomic interactions. Recent experimental investigations have demonstrated the ap-
pearance of two distinct Goldstone modes due to the simultaneous occurrence of superfluid
and solid order [11, 12, 13]. These results show that in dipolar supersolids the superfluid
and solid characters are coupled. Very importantly, these works directly demonstrate that
the supersolid lattice is compressible, as expected for He supersolids and differently from
supersolids with light-mediated interactions.

Despite these initial accomplishments, many questions still remain. In particular, no
experiments have measured the superfluid fraction of the dipolar supersolid, in the spirit of
the original experiments with solid Helium. This is the objective of my Thesis: to imple-
ment an experiment able to measure non-classical rotational inertia in a dipolar supersolid,
and estimate its superfluid fraction, so as to close the loop with respect to the initial works.

1.2 Non-classical rotational inertia as probe to super-
fluidity

As introduced in section 1.1.2, one of the key manifestations of superfluidity in liquids and
gases is the reduction of their moment of inertia under slow rotations. In this section we
will focus on this peculiar property of superfluids: we will show that the NCRI effect is a
proper definition of superfluidity (since it is directly related to the topological properties of
the superfluid wavefunction) and can be employed to quantify the superfluid fraction. We
will then investigate the NCRI effect in a supersolid. Since the supersolid wavefunction
is modulated, the superfluid fraction is expected to be smaller than one, even at zero
temperature. Following the original work by Leggett, we will show that the measurement of
the NCRI effect in a solid can be used to estimate its superfluid fraction, therefore assessing
its supersolid character. Finally, we will also derive an upper limit for the superfluid fraction
of a one-dimensional supersolid in an annular geometry. A similar calculation will be used
in chapter 4 to estimate the superfluid fraction of a dipolar supersolid.

1.2.1 Non-classical rotational inertia

To introduce what is meant by NCRI let us imagine this simple experiment, known as the
torsion oscillator experiment. We take an empty cylinder container and put it on the axis
of a rotative platform. When the platform starts rotating (at sufficiently low speed) the
container follows almost instantaneously the rotation, and no energy is dissipated as heat.
We now repeat the experiment with the container filled with a normal liquid. At first, the
fluid will stay at rest (in the lab frame). Although some energy is dissipated as heat in
bringing the liquid into rotation, after long enough time equilibrium is reached and the
fluid and the container will rotate with the platform.

As already discussed, in 1967 Hess & Fairbank tried this experiment with 4He. They
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1.2 – Non-classical rotational inertia as probe to superfluidity

Figure 1.5: Hess & Fairbank experiment: Angular momentum L of the superfluid
versus angular velocity ω of the rotor, after helium is cooled in rotation.The dashed line is
the angular momentum of a classical system. The solid line segments are the equilibrium
state predicted by the vortex model. Taken from [19].

started rotating slowly a container filled with liquid He and gradually lowered the tem-
perature. While above the lambda transition (in the He I phase) the system was rotating
with the container as a normal fluid, below Tλ = 2.17 K (in the He II phase) they observed
that He gradually stopped the rotation. Eventually, at T → 0, it was stationary in the lab
frame (see figure 1.5), showing that the equilibrium behavior of the system has zero rota-
tional inertia. Remarkably, the container didn’t just start rotating from rest for T < Tλ.
If that were the case, the experiment could have been interpreted as the manifestation of
the absence of viscosity in He II, still a superfluid effect, but different from NCRI. A fluid
with zero viscosity is a system with zero internal frictional force and no resistance to a
shear stress when perturbed below a certain velocity (the Landau critical velocity in the
case of a superfluid). Instead, the Hess & Fairbank experiment shows the true equilibrium
behavior of a superfluid, and gives information on the nature of its wavefunction [3].

As discussed in section 1.1.2, the superfluid phase is characterized by what one might
call “generalized BEC”. As a consequence, a superfluid can be described by the BEC order
parameter, and the superfluid velocity is, by definition, the gradient of the phase

vs =
~

m
∇ϕ (1.5)

Since the velocity is proportional to the gradient of a scalar quantity, it follows that the
superfluid flow must be irrotational: ∇ × vs = 0. Therefore, the circulation around any
closed loop in the superfluid is proportional to the total phase difference around the loop.
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On the supersolid phase of matter

Since the phase ϕ of the order parameter must be single-valued module 2π, integration
of equation (1.5) leads to the Onsager-Feynman quantization condition for the superfluid
velocity

∮

vs dl =
h

m
n (1.6)

where n is a positive integer. For a cylindrical superfluid rotating at low angular velocities,
ω → 0, this prescription turns into a vanishing of both angular momentum L and moment
of inertia I = 〈L〉/ω: the superfluid shows NCRI. A finite value of the angular momentum
can appear only for sufficiently large ω at integer multiples of the reduced Planck constant
~, through the occurrence of quantized vortices.

As shown in figure 1.5, with their experiment of Hess & Fairbank showed that when
the system is rotated at ω < ωc, no vortex is created and the angular momentum of the
fluid is transferred to the walls of the container, while the superfluid gradually stopped the
rotation. Only when rotated at ω > ωc the system acquires a quantized angular momentum
though the creation of vortices [19].

1.2.2 NCRI and superfluid fraction

In the previous section we have introduced phenomenologically the Hess & Fairbank ex-
periment and related the occurrence of NCRI to the irrotational character of the velocity
flow in a superfluid. In this section we will directly use the NCRI phenomenon to define
the superfluid fraction of the system. Also, we will show that the occurrence of NCRI in
a quantum system gives a direct clue to the topological nature of its ground-state wave-
function.

To be more quantitative, let us consider N particles with mass m in a cylinder container
with radius R and thickness d, and take d ≪ R, like in figure 1.6. When put into rotation
at low angular velocities the classical momentum of inertia is defined in the common way
as Ic = NmR2, and the classical rotational energy Ec = Elab − E0 reads

Ec =
1
2
Ic ω

2 (1.7)

where E0 is the energy for ω = 0 and Elab is the energy measured in the laboratory frame.
If our system is governed by quantum mechanics than we need a more general definition

of rotational inertia than Ic. We may assume from symmetry arguments that the energy
of rotation is proportional to ω2 for small ω, so we can define a moment of inertia I by the
relation

I = lim
ω→0

(

∂2E

∂ω2

)

(1.8)

By measuring the total momentum of inertia I = 〈L〉/ω in the lab frame, it is possible to
quantify the superfluid fraction defined in (1.2). The definition reads

fs =
ρs

ρ
=

(

1 − I

Ic

)

(1.9)

Note that for fs = 0 the system is normal, while for fs = 1 the system stays at rest in the
lab frame (but rotates in the opposite direction in the rotating frame).
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1.2 – Non-classical rotational inertia as probe to superfluidity

Figure 1.6: One dimensional ring: The ring geometry treated here. With periodic
boundary conditions this system can represent an infinite one dimensional superfluid.
Taken from [18]

Now we want to investigate what properties a system must have to show NCRI, and
further how these properties determine the superfluid wave function. To do so we construct
a trial wave function Ψ(r1, r2, ..., rN ) which minimizes the energy of the system. In the
following, we will consider cylindrical coordinates: ri → (ri, zi, θi), and for simplicity, we
will not write the dependence on ri, zi where it is understood.

Let us consider first the system at rest. The ground state wave-function Ψ0 obeys
the time-independent Schrödinger equation ĤΨ0 = E0Ψ0. This function must satisfy two
conditions:

• The symmetry condition for a bosonic system:

Ψ0(θ1, ..., θi, θj , ..., θN ) = +Ψ0(θ1, ..., θj , θi, ..., θN ) (1.10)

• The single-valuedness boundary condition (SVBC):

Ψ0(θ1, ..., θi + 2π, ..., θN ) = Ψ0(θ1, ..., θi, ..., θN ) (1.11)

The SVBC says that if we take one particle once round the ring, holding all the others
fixed, we must come back to the wave function with which we started. Apart from these
conditions, we know that Ψ0 can be taken real, and, for a Bose system, nodeless.

Let us now consider the situation where the walls are rotating with angular velocity
ω < ωc. The Schrödinger equation is now time-dependent in the lab frame, so, to solve
the problem we must transform it into the frame of the rotating walls and seek the ground
state in that frame. The rotating wave function Ψ′

0(θ′
1, ..., θ

′
N ) obeys the new Schrödinger
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On the supersolid phase of matter

equation Ĥ ′Ψ′
0 = E′

0Ψ′
0, with the new rotating Hamiltonian Ĥ ′ = Ĥ − ω × L̂, and subject

to a changed SVBC

Ψ′
0(θ′

1, ..., θ
′
i + 2π, ..., θ′

N ) = exp[−2πi α] Ψ′
0(θ′

1, ..., θ
′
i, ..., θ

′
N ) (1.12)

where α = ω/ωc = ωmR2/~. As a result, the ground state energy in the rotating frame
E′

0 is now in general a function of ω: E′
0 = E′

0(ω). Moreover the energy in the lab frame
Elab is related to E′

0(ω) by

Elab = E0 + Ec −
[

E′
0(ω) − E0

]

(1.13)

where −
[

E′
0(ω) − E0

]

is the energy deviation from a normal system. Therefore, there are
two different cases which can occur for ω /= 0:

• Rigid rotation (solid or fluid): ω /= 0 and E′
0(ω) = E0 → Elab = E0 + Ec

• NCRI effects (superfluid): ω /= 0 and E′
0(ω) > E0 → Elab < E0 + Ec

Thus the occurrence of NCRI, in general, lowers the ground state energy in the lab frame
from the classical value, until for fs = 1 → Elab = E0, ∀ω < ωc. Inserting (1.8) into the
definition of the superfluid fraction (1.9), and using the equation (1.13) for the energy we
get

fs = lim
ω→0

1
Ic

(

∂2E′
0(ω)

∂ω2

)

(1.14)

hence if E′
0(ω) is independent of ω, the system can not be superfluid and the particles

follow the rotating container at any angular velocity. Instead, in the truly ground state of
a perfect superfluid (fs = 1) the inertia is zero and the fluid stays at rest in the lab frame.

1.2.3 Superfluidity and topology

In the previous section, we have seen that a system can rotate in two ways: classically or
with NCRI. Now we will discuss how these two different rotational properties are correlated
with the ground state wave function of the system Ψ0. What we have to do now is to solve
the original Schrödinger equation subject to the altered SVBC (1.12), in order to account
for the system’s rotation. Intuitively, we have to put enough extra “kinks” in the wave
function to fulfill the SVBC, while keeping the extra energy to a minimum.

It helps to draw a diagram of the ground state wavefunction in the rotating frame Ψ′

(see figure 1.7). The axes of the diagram correspond to the variable θ1 and θ2, and we
denote by heavy dots the "lattice points" (2nπ, 2mπ). Due to the SVBC the wave function
is always completely specified by its behavior in the first cell OABC. Moreover, because
of symmetry conditions, it is always symmetric with respect to reflection in the line OB,
hence it is completely specified by its value in the octant OAB.

If we split the wave function by its amplitude f(r) and the phase ϕ(r), the SVBC (1.12)
says that irrespective of α (thus ω), f must be unaffected by translation by a lattice vector,
e.g., f(O) = f(A). For the ground state Ψ0 also the phase must be unaffected by a lattice
translation. For Ψ′

0 in the rotating frame, a translation by a lattice vector must increase
ϕ by 2πα. Thus if ϕ(O) = 0, then ϕ(A) = 2πα and ϕ(B) = 4πα. As a consequence, the
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1.2 – Non-classical rotational inertia as probe to superfluidity

Figure 1.7: Two-dimensional topology diagram: The axes of the diagram correspond
to the variable θ1 and θ2, and we denote to heavy dots the lattice points (2nπ, 2mπ). Thus
O is the point (0,0), A is (2π, 0), C is (0, 2π), and B is (2π, 2π).

behaviour of the system under rotation depends on the topological properties of the wave
function. Now three different situations can arise:

(1) The system can modify trivially its ground state Ψ0 to meet the altered SVBC,
without expenditure of energy. This situation occurs when Ψ0 is localized in a region small
compared to the unit cell and drops off exponentially outside. We can, therefore, change the
phase of the wave function in the region where Ψ0 is exponentially small to fulfill the altered
SVBC at no extra cost in energy (E′(ω) − E0). In this case Ψ′

0 = Ψ0, and if the rotating
boundary conditions are switched on suddenly, the system follows adiabatically and does
not dissipate energy in coming into equilibrium. This is the situation characteristic of a
normal solid.

(2) The original ground state wave function can not be trivially modified without
expenditure of energy. This situation occurs when Ψ0 is not localized but has non-trivial
nodal hyperplanes so that we cannot move from O to A,B, etc without crossing at least
one such hyperplane. We can, therefore, put f ′ = f everywhere, and ϕ′ = ϕ at one side
of the nodal hyperplane and ϕ′ = ϕ + 2πα on the other. The discontinuity occurs where
Ψ0 = 0, and therefore costs no extra energy. Then the system will not follow adiabatically
the boundary conditions when they are suddenly switched on, but after a sufficiently long
time, the system will rotate with the container. This means that energy is dissipated as
heat in bringing the system into equilibrium. This situation is typical of a normal liquid.

(3) There is no wave function that obeys the modified SVBC and yields E′
0(ω) = E′

0.
In this case, the system stays in the ground state and modifies it. Since this costs energy,
E′

0(ω) /= E′
0 and fs is finite. Ψ0 is such that there exist at least some paths leading

from O to A such that Ψ0 is everywhere larger or equal than a constant on these pats.
Now, at least in the regions where Ψ0 does not vanish, an arbitrary wave function can be
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written in the form Ψ′
0 = A exp[iΦ]Ψ0. Where A and Φ are functions of (r1, r2, ..., rN ) and

Φ(...θi + 2π...) = Φ(...θi...) + 2πα. Choosing A = 1 and using the reality of Ψ0 we find

E′(ω) − E0 =
∫

dθ1...dθN

∑

i

(

∂Φ
∂θi

)2

Ψ2
0(θ1...θN ) (1.15)

But we have
∫ 2π

0
dθi

(

∂Φ
∂θi

)

= 2πα (mod 2π) (1.16)

and, by hypothesis, at least on some paths going from 0 to 2π, Ψ2
0 is finite. Then the right

hand of equation (1.15) is finite. Thus E′
0(ω) depends non-trivially from ω and the system

shows NCRI. This is a sufficient condition for superfluidity in the sense of NCRI at T = 0.
We can say that this is the definition of superfluidity.

To sum up: the equilibrium behavior under slow rotation of a quantum system at
T = 0 is determined by the ground state wave function Ψ0. If Ψ0 vanishes (or becomes
exponentially small) on all paths leading from θi → θi+2π, the system is normal; otherwise
it is superfluid. In other words, if we can find a way of taking one particle around the ring,
arriving back at the situation where all other particles are in their original position, in such
a way that Ψ0 remains finite, then the system is superfluid. Otherwise, it is normal.

Following this criterion, one finds that no Bose system can be normal at T = 0. Due to
the property of ODLRO, the ground state wave function Ψ0 of a BEC is always nodeless,
thus it is included into the case (3). Hence we can say that BEC implies superfluidity, in
the sense of NCRI. Now let us examine how the NCRI effect manifests in a supersolid.

1.2.4 NCRI in a supersolid

In 1970, Leggett suggested that "the property of non-classical rotational inertia possessed
by superfluid liquid helium may be shared by some solids" [3]. Leggett was thinking about
supersolidity in solid He. In his seminal paper, he showed that such a supersolid (a solid
with non-zero NCRI) should possess a superfluid fraction smaller than unity even at zero
temperature, due to the modulated nature of the wavefunction. He also suggested the way
to measure the presence of a finite superfluid fraction, by measuring the NCRI effect with
a torsion oscillator experiment, similar to the one performed by Hess & Fairbank for a
purely superfluid sample.

I will now follow Leggett’s argument, in order to derive an upper bound for the superfluid
fraction in a (density modulated) supersolid sample. The calculation is performed in the
same geometry introduced in section 1.2.2. We consider N particles with mass m in a
cylinder container with radius R and thickness d, with d ≪ R as in figure 1.6. We however
consider a solid system, that is the density ρ(r), does not tend to a constant value even
deep inside the sample (in other words ρ(r) shows strong variations over the sample, which
is different than saying that the atoms are localized). The Hamiltonian of this system is

Ĥ = − ~
2

2m

N
∑

i=1

∇2
i +

1
2

N
∑

i,j=1

U(ri − rj) +
N
∑

i=1

V (ri) (1.17)
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A B C

Figure 1.8: Superfluid in a 1D ring: Here it is shown the case of a superfluid in a
rotating annulus with (A) separated superfluid droplets (Q0 = 0), (B) modulated wave
function but globally coherent (0 < Q0 < 1), and (C) homogeneous superfluid (Q0 = 1).

where the first term is the kinetic energy, U is the interparticle interaction and V is the
time-independent external potential. As in section 1.2.2, we construct a trial wavefunction
Ψ0 satisfying the altered boundary conditions (1.12), in the form:

Ψ′
0(r1, ..., rN ;ω) = exp

[

i
N
∑

i,j=1

ϕ(ri;ω)
]

Ψ′
0(r1, ..., rN ) (1.18)

where ϕ satisfies the boundary conditions (1.12). When applying Ψ0 to the Hamiltonian,
we obtain that the energy is:

〈H〉 = E0 +
~

2

2m

∫

(∇ϕ)2ρ(r)dr (1.19)

Since we are neglecting terms in d/R the problem is unchanged if we “unroll” the annulus
to form a rectangular parallelepiped of length 2πR, and change the boundary conditions
(1.12) in:

ϕ(2πR, y, z) = ϕ(0, y, z) − 2πα (1.20)

where x, y, and z are Cartesian coordinates and x runs from 0 to 2πR. We then apply stan-
dard variational methods to choose ϕ so as to minimize (1.19). Because of the symmetric
character of ρ(r) we can focus on the supersolid unit cell. Assuming a unit cell with axes
a, b and c parallel to the x, y and z directions respectively, we introduce the normalized
coordinates x′ = x/a; y′ = y/b; z′ = z/c and normalized density ρ′(r) = ρ(r)/〈ρ〉. We find

〈H〉 = E0 +
1
2
NmR2ω2Q0 (1.21)

where

Q0 =

[

∫ 1

0

dx′

∫ 1
0

∫ 1
0 ρ

′(r)dy′dz′

]−1

≤ 1 (1.22)
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comparing (1.21) with (1.14) we get

fs ≤ Q0 (1.23)

Note that for a homogeneous superfluid where Q0 = 1 we have the trivial result fs ≤ 1
(figure 1.8.C). If instead the wavefunction is modulated, the value of Q0, and therefore the
superfluid fraction, diminishes (figure 1.8.B). In the limit of a vanishing density for some r
in the unit cell, Q0 = 0 and the system behaves as non-superfluid (figure 1.8.A). In general
the quantity Q0 becomes very small when there exists any yz plane in the unit cell near
which there is very small probability of finding an atom. In other words, it is extremely
small unless there is an appreciable probability of "exchange" of particles between sites.
However, it is important to remark that is the lack of translational invariance of the ground
state wave function, not that of the Hamiltonian, that reduces the value of the superfluid
fraction.

In 1970, Leggett calculated the value of Q0 for the case of solid Helium, using its known
exchange constant and lattice constant. He found an upper bound for the superfluid
fraction in solid He of the order: fs < 3 × 10−4. Remarkably recent experiments have not
observed a superfluid fraction in solid He-4 above this value. A similar quantity can be
computed also for the case of a dipolar supersolid, where the unit cell is not composed
by a single atom, but by a superfluid cluster of many atoms. For this reason in dipolar
supersolidsQ0 is expected to be much larger than in solid He. The precise calculation of this
quantity for a dipolar supersolid is reported in Chapter 4, together with the experimental
measurement.
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Chapter 2

From Bose-Einstein
condensation to supersolidity

Previous reports of supersolid-like states in Bose-Einstein condensates used external influ-
ences to induce the modulation of the wave function [26, 27]. What sets dipolar supersolids
apart from other cold-atom experiments is that no external influence is needed to gener-
ate this modulation, but naturally arises from internal interactions. As a consequence,
in dipolar supersolids, the emergent crystalline structure, which spontaneously breaks the
translational invariance typical of a uniform gas, is deformable.

In this chapter, we will introduce Bose-Einstein condensation in a dipolar gas, and we
will discuss its main properties: the long-range and anisotropic character of the interactions,
its peculiar excitation spectrum and its stability diagram. Then, we will introduce the main
ingredients required to obtain a dipolar supersolid from a dipolar quantum gas, and we will
report on its first experimental observation. Finally, we will briefly discuss the collective
excitations of a trapped superfluid as possible probes of superfluidity. In particular, we will
focus on the so-called scissors mode. This excitation is the oscillatory rotation of the gas
in response to a sudden rotation of the trap, analog to the torsion oscillator experiment
introduced in section 1.2.2. We will show that this oscillation can reveal the presence of
non-classical rotational inertia effects in the gas, thus test its superfluid character.

2.1 Dipolar quantum gas

The occurrence of quantum condensation of bosons was firstly predicted by A. Einstein
in 1925, after S. Bose derived the statistical description of photons in 1924, from then
on known as Bose-Einstein distribution. As already discussed in section 1.1.2 this state
appears when, at sufficiently low temperatures, a macroscopic number of bosons occupy the
same quantum state, the ground state of the system. A direct consequence of BEC is the
occurrence of superfluidity and NCRI. It is, in fact, the discovery of He II, the superfluid
phase of 4He in 1937 by Kapitza and Allen & Misener the first evidence of Bose-Einstein
condensation, only pointed out by London in 1938 who associated the lambda transition of
a superfluid with the BEC transition. To observe a condensate in its purer form we have
to wait until 1995, when Ketterle, Wieman & Cornell, due to the development of laser
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cooling and trapping of neutral atoms, firstly achieved quantum degeneracy in ultracold
alkali gases. The main interaction between alkaline atoms arises from the Lennard-Jones
potential, a spherical symmetric short-range interaction that treat the particles as hard
spheres with a weak attractive potential.

In 2005 T. Pfau achieved the condensation of chromium, an atomic species with a high
intrinsic magnetic dipole moment [36], and afterwards has been condensed also dysprosium
and erbium [37, 38]. The resulting attractive dipole potential together with the repulsive
contact interaction leads to new and exciting excitations. Among them is of particular in-
terest the roton mode, a peculiar excitation similar to 4He, essential to reach the supersolid
phase.

In the following, we will discuss the main features of Bose-Einstein condensation with
particular interest on dipolar gases. We briefly explain the nature of the interactions in
play: the contact interaction and dipole-dipole interaction, besides an important feature
to control their relative strength, the Feshbach resonances. Hence we will treat the Hamil-
tonian of the gas with a mean-field approach. We will consider the stability condition of
the ground state of a homogeneous and a trapped gas, which includes geometry and exci-
tations, besides an important consequence of a polarized gas: the elongation of the shape
towards the direction of the dipoles.

2.1.1 Bose Einstein condensation

As discussed in section 1.1 Bose-Einstein condensation is a consequence of Bose statistics,
and consists on the macroscopic occupation of the ground state of the system. In general,
to see the effects of quantum statistics in a system, we need it to be degenerate. Namely,
its thermal energy kBT should be much lower than the characteristic quantum mechanical
energy ε of the system, with kB the Boltzmann constant. Generally speaking, ε is of the
order of h/md2 where h is the Planck constant and d is the distance between particles. So
this condition implies at least that λdB ∼ d where λdB is the thermal de Broglie wavelength
of a free particle with mass m

λdB =

√

h2

mkBT
(2.1)

Since λdB ∝ T−1/2 a we need low temperature and high densities. The criterion above is not
enough alone, to see the effects of quantum statistics we also need that the particles should
be able to change places fairly easily. Considering two identical bosons the not symmetrized
wave function is ψ(r1, r2). Indistinguishability implies that we have to properly symmetrize
the wave function

ΨS(r1, r2) =
1√
2

[

ψ(r1, r2) + ψ(r2, r1)
]

(2.2)

We need at least some regions of phase space where ψ(r1, r2) and ψ(r2, r1) are both appre-
ciable. That is we need some values of r1 and r2 such that before we symmetrize the wave
function there is an appreciable probability of finding particle 1 at r1 and particle 2 at r2,
and an appreciable probability of finding 1 at r2 and 2 at r1.

Extending the above criteria to a macroscopic number of particles we have Bose-Einstein
condensation. As a consequence of quantum statistics it is possible to obtain the main
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2.1 – Dipolar quantum gas

Figure 2.1: Representation of a BEC: a) A shematic P − T phase diagram. The
natural transition line for condensation is from a solid phase, pointing that gaseous BECs
are metastable. b) Representation of a gas in a box before and after the BEC transition.

properties following qualitative arguments. We start considering an ideal gas of N Bosons
equally distributed in a box of volume V , obtaining a particle density of n = N/V . In the
thermodynamic limit the ground state of the system is the free particle state of momentum
p = ~k = 0. In order to render the above statement more quantitative, we introduce the
momentum distribution

ñ(k) =
1
N

〈ψ̂†(k) ψ̂(k)〉 (2.3)

where 〈...〉 stands for thermal expectation value and ψ̂†(k), ψ̂(k) are Bose creation and
annihilation operators of a particle with momentum ~k.

In condensate the ñ(k) operator will take the form

ñ(k) = n0δ(k) + ñNC(k) (2.4)

hence condensation is reached in momentum space, and particles are delocalized all over
the box. In ultracold gases condensation is reached not in a box potential yet in a harmonic
oscillator trap, indeed the ground state is not the zero-momentum state but the vacuum

state, i.e., the gaussian state with energy E = ~ω/2.
To quantify the condensation it is useful to employ the concept of phase space degen-

eracy, a parameter that tells how much a system is quantumly degenerate. Is defined as
D := nλ3

dB. As can be seen in figure 2.1, in a thermal gas the inter-particle spacing is much
larger than the de Broglie wavelength, d ≫ λdB, hence D ≪ 1 and the system follows the
classical laws of thermodynamics. In a condensate the wave functions of the single parti-
cles overlap, hence D ∼ 1 and it is not possible to treat the gas as a set of distinguishable
localized particles. The atoms become indistinguishable, completely delocalized inside the
box, and is necessary to use a single macroscopic wave function Ψ =

√
Nφ0, where φ0 is

the wave function of a single particle in the ground state.
Bose-Einstein condensation occurs when D ∼ 1. This condition can be experimentally

reached by increasing the density while decreasing the temperature. Accordingly, using
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equation (2.1), it is then possible to estimate the critical temperature for Bose-Einstein
condensation:

Tc =
2π~2n2/3

mkB
(2.5)

Typical critical temperatures in ultracold gases are Tc = 50nK ÷ 2mK with densities of
1014 ÷ 1015cm−3.

Reached the critical temperature, not all the particles collapse immediately into the
ground state, instead, for a confined gas, the condensate fraction follows:

n0 = 1 −
(

T

Tc

)α

(2.6)

where α depends on the geometry of the trap. For a 3D box potential α = 3/2, while for a
3D harmonic trap α = 3 [39]. The non-condensed fraction includes the thermal fraction nT

and the quantum depletion nqf. The last one is due to quantum correlation between atoms
at short distances. In contrast to liquid helium, however, the interactions in ultracold
quantum gases are very weak, due to the diluteness condition. Therefore, this component
can in general be neglected, and an almost pure condensate can be achieved.

2.1.2 Role of the interactions

Despite an ultracold quantum gas is very dilute - compared to a solid where densities are
of the order of 1023 cm−3, i.e., 8 orders of magnitude higher - since the kinetic energy is
very low, most of its properties are governed by the interactions between particles. In the
following, we present aspects of the interactions relevant to the description of a dipolar
Bose-Einstein condensate, which are the isotropic, short-range contact interaction and the
anisotropic long-range dipolar interaction. We also introduce an important experimental
tool to control the relative strength between the two: Feshbach resonances.

Short-range interactions

When two neutral atoms approach each other, they feel an attractive electric force due to
the mutual induced dipole-dipole interaction, the Van der Waals attraction, which scales as
−r−6. At very short distances the electron orbitals start to overlap, giving rise to a strong
repulsion, ultimately due to Pauli’s exclusion principle, which scales as r12. These two
contributions lead to the Lennard-Jones pseudo potential, whose characteristic interaction
length r0 satisfies the diluteness condition

r0 << d (2.7)

Under this condition, we can neglect interactions among three or more particles and
consider only two-body interactions. Since below the critical temperature the coherence
length is much larger than r0 (λ ∼ d ), as two particles approach each other they interact
before they resolve the molecular shape of the interatomic potential. This condition is
expressed as r0/λ << 1.
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2.1 – Dipolar quantum gas

Figure 2.2: Elastic scattering of two neutral atoms: a) In the center of mass frame
of two colliding particles the angular momentum of the interaction is determined by the
relative velocity v and impact parameter rimp. b,c) The value of the scattering length as is
determined by the intersection of the r axis with the asymptote of the radial wave function
R(r)r (dashed line). Slightly different potentials can result in positive (b) or negative (c)
as. Adapted from [40].

Following the scattering theory, in this regime interactions with angular momentum
different from 0 are forbidden and only elastic s-wave scattering between particles can
take place. This allows replacing the real interatomic potential, i.e., the Lennard-Jones
potential, with a contact pseudo-potential, which is isotropic and can be characterized by
a single parameter: the s-wave scattering length as [41]. This potential reads

Vcontact(r) = gδ(r) =
4π~2as

m
δ(r) (2.8)

where δ(r) is the Dirac delta function and g is the contact coupling strength, which de-
pends only on as. A positive scattering length implies a repulsive potential, while negative
as represents an attractive one. The value of as can be very different from one potential to
another and depends on the molecular bound. In figure 2.2 it is shown a schematic repre-
sentation of contact interactions. From now on the weakly interaction regime corresponds
to the request

as << d (2.9)

In cold atoms experiments the magnitude and even the sign of as can be tuned using an
external magnetic field. This phenomenon is called the Feshbach resonances (FRs).

Feshbach resonances

The FRs is a physical phenomena that involves the resonance of two potentials in a scat-
tering event. Is used in atoms physics to continuously change and control the mean-field
scattering length as. In experiments with quantum gases this possibility is important for
two reasons: control the collision properties can be essential for the attainment of the
condensate and the possibility to control the mean-field interaction opens up a variety of
interesting applications (ref review FRs 2010).
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From Bose-Einstein condensation to supersolidity

Figure 2.3: Feshbach resonance: a) The open and closed channel of the interaction.
The resonance occurs when the interacting kinetic energy E equals the binding energy Ec.
The energy difference ∆E is tunable by an external magnetic field. b) Scattering length
vs magnetic field. At the resonant condition as diverges according to (2.10). The zero
crossing is obtained for B = ∆B +B0.

First theoretical studies on FRs were done by Feshbach in 1958 in the context of nuclear
physics [ref] and later on brought into the context of atomic physics [ref] by Fano in 1961.
There are a variety of FRs to control a quantum system, such as magnetic, optical or
orbital FRs. Here we will only focus on Magnetic FRs.

To understand the physical idea behind the FRs we have to consider two atoms inter-
acting with energy E along two molecular potentials: Vbg(R) or “open” channel and Vc(R)
or “closed” channel, showed in figure 2.3. The open channel leads to elastic scattering
between two atoms, while the closed channel can change their internal states and lead to
a molecular bound. As the two particles approach each other the only accessible potential
is the open channel (also referred as entrance channel), due to the very low kinetic energy
of the collision (E ≈ 0). The closed channel is not accessible at first, nevertheless, once
the particles get sufficiently close to each other, if the bound energy Ec is equal to the
kinetic energy E, resonant coupling leads to a strong mixing between open and closed
channel and a very weakly-bound and short-lived diatomic molecule is formed. This effect
changes the scattering lengths of the atoms. If the two channels have different magnetic
moments µbg − µc = δµ /= 0, they are differently affected by an external magnetic field.
Using Zeeman splitting it is then possible to control the molecular potential and thus the
resonance condition, leading to a tunable scattering length. In particular this quantity is
modified near the resonance condition in according to

as(B) = abg

(

1 − ∆B
B −B0

)

(2.10)

The background scattering length abg is the value associated with the open channel Vbg(R),
B0 is the resonant magnetic field and ∆B the resonance width. For B ≃ B0 a diatomic
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2.1 – Dipolar quantum gas

Figure 2.4: Dipole-dipole interaction: Two particles interacting via DDI. a) The non
polarized case. b) The polarized case. c) The repulsive side by side configuration. d) The
attractive head-to-tail configuration. Adapted from [42].

molecule is formed and the scattering length diverges.

Long-range interactions

In ultracold dipolar gases also the dipole-dipole interaction (DDI) must be considered
[39]. This interaction arises from the natural action between two magnetic dipoles. In the
presence of strong enough external magnetic field, the dipoles align along the field such
that the atomic cloud gets polarized, the DDI simplifies as follows

Vdd(r, θ) =
µ0µ

2
m

4π
1 − 3 cos2 θ

r3
(2.11)

here µ0 is the vacuum permeability, µ2
m the intrinsic magnetic dipole moment of the atom,

θ the angle along the polarization direction and r the distance between the dipoles. The
essence of this interaction is its long-range nature (∼ r−3) and anisotropic character [42].
It is easy to see the anisotropy from the angle dependence: the dipole force can be repulsive
for θ = 0 (side by side configuration) or attractive for θ = π/2 (head-to-tail configuration),
as illustrated in figure 2.4. It is interesting to note that the interaction vanishes for the
so-called "magic angle" θ = arccos(1/

√
3) ≃ 54.7°.

A potential is defined to be short-range if the homogeneous properties of a large system,
such as the energy, can be defined by local quantities only, like the density n (µ = µ(n)).
If instead the number of particles N has to be explicitly specified (µ = µ(N, n)), due to
strong (diverging) dependence on N , the potential is long-range [42].

In order to see the long-range nature of the dipolar interaction we have to see its
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behavior at large distances, that is the following integral must converge for large R:

µ =
∫ R

b
Vdd r

D−1dr ∝ [rD−3]Rb (2.12)

where D is the dimensionality of the system and b some short (but finite) distance cutoff.
Following this definition, in D dimensions the potential is short-range if it decays at large
distance faster than r−D. This is true only if D < 3. Hence, the dipole-dipole interaction
is long-range in three dimensions, and short-range in one or two dimensions.

Due to the long-range character of DDI in principle all partial waves with angular
momenta l > 0 contribute to the scattering process, moreover the anisotropy couples these
partial waves with different angular momenta. Therefore, it’s not possible to describe
the scattering process with a short-range, isotropic contact interaction as done for the
molecular potential. Nevertheless, for low enough scattering energies, a first-order Born
approximation is still valid and the dipolar scattering can be approximated to be universal
and scatters only into s-wave channel.

For further discussions, it is convenient to quantify the strength of the DDI. To do so,
it is useful to define the dipolar scattering length add and dipolar coupling strength gdd, as
previously done with the contact interaction as and g

add =
mµ0µ

2
m

12π~2
and gdd =

4π~2add

m
(2.13)

And the ratio between this two parameters is the dimensionless relative interaction strength

εdd =
add

as
(2.14)

The dipolar scattering length add is defined such that the mean-field energy of a three-
dimensional homogeneous dipolar condensate becomes negative for εdd > 1, that is the
system becomes unstable and collapses. Nevertheless, in real experiments the condensate
is confined, and, as we will discuss in section 2.1.4, the stabilization condition depends
strongly on the geometry of the cloud, as suggests the anisotropic character of the DDI.
Therefore with the proper trap configuration, εdd can get bigger values, reaching the strong
dipolar regime, beyond εdd = 1. In fact, the supersolid phase occurs in this regime. Since
the background value of εdd is an intrinsic property of the atomic species considered, the
method of Feshbach resonances is essential in order to freely changed it, by tuning as.

Combining the short-range interaction and the DDI it is possible to write the resulting
interaction potential of a dipolar condensate:

Vint(r, θ) = gδ(r) +
3gdd

4π
1 − 3 cos2 θ

r3
(2.15)

2.1.3 Mean-field description

The first approach to a system of many interacting particles is the so-called mean-field
approximation [39]. This implies that each particle feels an effective potential that is the
average of all other particle interactions. The many-body Hamiltonian of a condensate of
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interacting bosons confined in an external potential Vext, written in second quantization
reads

Ĥ =
∫

d3r Ψ̂†(r)

(

− ~
2

2m
∇2 + Vext(r)

)

Ψ̂(r) +

+
1
2

∫

d3r d3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r − r′)Ψ̂(r)Ψ̂(r′)

(2.16)

where Ψ̂†(r) and Ψ̂(r) are the creation and annihilation bosonic operators. These opera-
tors fulfill the normalization N =

∫

d3r Ψ̂†(r)Ψ̂(r). In the Heisenberg representation the
operators are time dependent

i~ ∂tΨ̂(r, t) =
[

Ψ̂(r, t), Ĥ
]

=

=

(

− ~
2

2m
∇2 + Vext(r) +

∫

d3r′ Ψ̂†(r′, t)Vint(r − r′)Ψ̂(r′, t)

)

Ψ̂(r, t)
(2.17)

Since numerical simulations of this Hamiltonian are very complicated, sometimes impos-
sible, it is useful to introduce a classical field approximation, first introduced by Bogoliubov
in order to study the ground state dispersion relation of a condensate. The approxima-
tion states that it is possible to write the bosonic operator in terms of a classical function
Ψ with a small perturbation in second quantization δΨ̂, which corresponds to quantum
fluctuations

Ψ̂(r, t) = Ψ(r, t) + δΨ̂(r, t) (2.18)

The function Ψ is the superfluid order parameter introduced in section 1.1.2, is the macro-
scopic wave function of the condensate and is equal to

√
Nϕ0, where ϕ0 is the single-particle

wavefunction. This approximation assumes a large occupation of the ground state of the
system, thus does not prove the existence of the condensate, and considers the quantum
depletion negligible [39]. This assumption is doable in ultracold quantum gases where quan-
tum fluctuations are weak. Nevertheless, as we will see in section 2.2.2, the contribution
of these fluctuations is crucial in order to stabilize the supersolid.

Using the ansatz of a slowly varying wave function Ψ(r, t) = ψ(r)exp(−iµt/~), where
µ is the chemical potential, we can separate-off the time dependence and end-up with the
stationary dipolar Gross-Pitaevskii Equation (dGPE)

µψ(r) =

(

− ~
2

2m
∇2 + Vext(r) + Φcontact(r) + Φdd(r)

)

ψ(r) (2.19)

where we used the mean-field potentials of the contact interaction Φcontact(r) = gn(r) and
dipolar interaction Φdd(r) =

∫

d3r Vdd(r − r′)n(r′). Here n(r, t) = |Ψ(r, t)|2 is the density.
Now, in order to discuss the ground state properties and excitations of the condensate,

we must derive the energy functional

E(n, r) =
∫

d3r

(

~
2

2m
∇2 + Vext(r) +

Φcontact(r) + Φdd(r)
2

)

n(r) (2.20)

The lowest energy configuration can be obtained by imposing the usual variational ansatz
δ(E − µN) = 0, with the chemical potential found above (2.19) [39].
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Figure 2.5: Phonons excitations: a) A phonon excitation in a homogeneous dipolar BEC
with α = π/2 creates vertical planes with a head to tail configuration, which is instable
for εdd bigger than 1. b) When the dipoles are parallel to the wave vector (α = 0) the
configuration is side by side and more stable. Taken from [42]

2.1.4 Instabilities

Because of the partially attractive nature of the dipolar condensate, the stability condition
of the ground state and the role of the excitations is a problem that needs to be addressed.
Firstly we will treat the homogeneous gas. Hence we will treat a trapped condensate and
the role of the geometry and the strength interaction εdd in the stability. Finally, we will
discuss a consequence of the polarization of the gas: the magnetostriction.

Homogeneous gas

We consider here the excitations of a 3D homogeneous dipolar condensate, that is with no
external potential. For a condensate with a given equilibrium density n and interaction εdd,
the corresponding Bogoliubov dispersion relation is determined by the Fourier transform
Ṽint(q) of the two-body interaction potential (2.15)

E(q) = ~ω(q) =

√

√

√

√

√

(

~2q2

2m

)2

+
~2q2

2m
gn
[

1 + εdd(3 cos2 α− 1)
]

(2.21)

where α is the angle between the direction of the dipoles and the excitation q. Lets now
consider phonon solutions (q → 0). The speed of propagation of the excitation reads

cs = lim
q→0

E(q)
q

=

√

~gn

2m

√

1 + εdd(3 cos2 α− 1) (2.22)

Fixed the value of εdd, the anisotropy of the DDI brings to different sound speeds for
different values of α. A large cs value implies a more stable system against compression,
while a small cs value corresponds to a softening of the mode. The velocity is maximum for
α = 0 and minimum for α = π/2. In particular, in the latter case, a phononic excitation
becomes imaginary for εdd ≥ 1 and the system becomes unstable. Furthermore, a purely
dipolar (g = 0) 3D homogeneous condensate is unstable, as the cloud tends to acquire a
head-to-tail configuration while cs is zero (equation 2.22), thus as the number of dipoles
increases the system goes into a macroscopic collapse.
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Figure 2.6: Stability diagram: Here is shown the stability diagram of a cylindrical dipolar
condensate in the plane (λ, as). The dots correspond to experimental data, the thick lane
is obtained using a gaussian ansatz of the wave function and the thin line to numerically
solving the equation (2.17). Very prolate traps (λ ≪ 1) can stabilize for smaller values
of as. As as ∝ ε−1

dd it is possible to reach the strong dipolar regime εdd > 1 necessary to
achieve a dipolar supersolid. Taken from [42]

Trapped gas

The ground state configuration of a non-dipolar condensate with attractive interactions
(a < 0) it is stable only for low enough atoms number in a trapped configuration. In
particular, for N |a|/aho ≤ 0.58, where N is the atoms number and aho =

√

~/mω is the
harmonic oscillator length.

In a dipolar condensate, the situation is slightly different. The attractive nature of
the dipoles can be hidden by strongly confining the atoms in the dipole direction. Let us
consider a cylindrical trap with the dipoles aligned in the z-axis with a certain confinement
parameter λ = ωz/ωρ, where ωρ is the radial frequency. For an oblate trap (λ > 1) the
DDI is mostly repulsive (side by side configuration) and it is easier to stabilize the system.
Instead for a prolate trap (λ < 1), the DDI is most attractive (head-to-tail configuration),
therefore it is more difficult to achieve stabilization. It is now intuitive that the stability
condition depends on the balance between the trap geometry and the interaction strength.
In particular, given a value of λ exists a critical value of as (hence εdd) for which the con-
densate becomes unstable [42]. Following equation (2.14) the lower can be as, the bigger
εdd. A typical stability diagram is shown in figure (2.6).

An important effect that arises in a trapped dipolar condensate in the presence of an
external magnetic field is the elongation of the cloud in the direction along the orientation
of the dipoles. In a condensate in the Thomas-Fermi distribution, the atoms generate a
mean-field potential with the shape of a saddle, with the minima along the direction of the
dipoles. Therefore the system minimizes the energy by assuming a head-to-tail configura-
tion, changing the shape of the cloud and its volume. This effect, called magnetostriction,
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strongly depends on the value of εdd [42].
A good comprehension of the stabilization parameters is important to experimentally

achieve the supersolid in a prolate trap. Moreover, the magnetostriction effect on the
cloud shape geometry is crucial when studying the in trap modes. As we will see in section
(2.3.3) the resulting frequency of certain collective excitations of a dBEC and a SS strongly
depends on their configuration ground state. Another important excitation that could lead
to an instability in a trapped dipolar condensate is the so-called roton mode. But since
its important role in the creation of the supersolid is treated more carefully in the next
chapter.

2.2 Dipolar supersolid

In this chapter, we will discuss the two main ingredients that give rise, under proper
conditions, to a novel regime with supersolid properties in a dipolar quantum gas. First,
we will introduce the roton mode, an excitation of a trapped dipolar condensate that
leads to a finite momentum instability, able to imprint a density modulation with finite
wavelength to the dipolar quantum gas. We will then discuss the stabilizing effects of
quantum fluctuations on a collapsing dipolar condensate. We will show that, for a narrow
range of scattering length and trap confinement, these two ingredients give rise to a coherent
stripe modulation, in other words, a supersolid. Finally, we will introduce some of the
main features of a trapped dipolar supersolid, such as its excitation spectrum and its main
collective excitations.

2.2.1 Roton instability

As discussed in section 2.1.4, the excitations of a condensate can lead to the collapse of
a homogeneous gas when εdd ≥ 1, but in an oblate trap a condensate can stabilize even
in the strong dipolar regime. Here we introduce a different kind of instability occurring
in a dipolar BEC, when trapped in a quasi-2D geometry, or in an oblate trap: the roton
instability.

The concept of roton has been introduced by Lev Landau in 1960 when he was trying
to give a phenomenological description of the dispersion relation of superfluid 4He. He
introduced the concept of two quasi-particles: phonons, sound waves with linear dispersion
at low momentum, and rotons, parabolic collective excitations at higher momentum with
a characteristic local energy minimum ∆. The roton minimum is a consequence of the
competition between attractive and repulsive forces. In general, it originates from the fact
that at intermediate momenta one has a local structure produced by the tendency of atoms
to stay apart [8].

In order to elucidate the origin of the roton minimum in a quasi-2D dipolar gas, let
us assume an infinite “pancake” trap, i.e. a cylindrically symmetric with Lρ → ∞ and a
low confinement length Lz. Here z is the directions of the dipoles, while ρ is the radial
coordinate in the plane perpendicular to z. A typical excitation spectrum of this system
is shown in figure 2.7. For momenta q ≪ 2π/Lz the existence of a confinement in the
z-direction prevent excitations along the z-axis. Therefore the excitations have a 2D (in-
plane) character. Since the dipoles are perpendicular to the plane of the trap, they repel
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Figure 2.7: Roton dispersion relation: Typical dispersion law ǫ for different values of
the parameter εdd and µ/~ω. The solid curves show the numerical results, and the dotted
curves the result of equation 2.19. Taken from [8].

each other and the in-plane excitations are phonons. For q ≫ 2π/Lz, excitations can
acquire a 3D character and the inter-particle repulsion is reduced, since dipoles can interact
also in a head-to-tail configuration. This decreases the excitation energy under an increase
of q. The spectrum reaches a minimum at E(q) = ∆ and then starts to grow with a
parabolic curve, as the excitations acquire a free particle character [8].

In dipolar condensates, the position and amplitude of the roton are tunable. In particu-
lar the roton momentum qrot depends on the vertical confinement Lz; thus it can be tuned
by changing the trap confinement in the z direction. The roton gap delta depends instead
on the dipolar strength εdd; it can be tuned by changing the density of the sample or, more
easily, by tuning the contact scattering length as. When the roton energy falls to zero, the
frequency becomes imaginary. The subsequent exponentially growth of the q = qrot state
modulates the condensate wave function with periodicity d = 1/qrot, a rotonic instability
and a rotonic instability develops.

The roton instability and the rotonic spectrum of a dipolar BEC phase were observed
in 2018, by the Innsbruck group with an Erbium dipolar gas [29, 30]. However no studies
on the time evolution of a "rotonized" dipolar gas were performed in these work, in order
to test its potential supersolidity.

2.2.2 Quantum fluctuations

In 2016, the Stuttgart group explored the fate of an unstable dipolar condensate trapped in
an oblate trap [43]. As discussed in section 2.2.1, in this configuration the excitation spec-
trum of the dipolar gas shows a roton minimum, and for large enough εdd the system should
undergo a roton instability. As shown in figure 2.8, the experiment report the formation of
a peculiar droplet crystal, presumably triggered by the roton instability. At the instability
the condensate, instead of collapse, reassembles itself in several self-bound droplets, which
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Figure 2.8: Droplet lattice: a) A quantum gas of dysprosium atoms confined in a pancake
geometry go through a droplet crystal by lowering as. b) The droplets arrange themselves
in an auto-induced triangular lattice with a number of droplets from 2 to 10. c) The number
of droplets is proportional to the number of atoms, with ∼ 2000 atoms per droplet. Taken
from [43].

repel each others, forming an ordered lattice. Even though every single droplet is super-
fluid, no evidence of superfluidity or mutual phase coherence between droplets was found.
However, these droplets are particularly interesting. They are indeed a stable self-bound
quantum state, occurring in a system that should collapse at the mean field level.

Subsequent experimental and theoretical works [43, 44, 45, 46], have shown that the
stabilization mechanism of quantum droplets stems from quantum fluctuations, which are
almost negligible in standard BECs, but relevant in attractive dipolar BECs. The same
mechanisms was predicted to stabilize also a mixture of (non dipolar) Bose-Einstein con-
densates in 2015 [34], as observed two years ago [32, 33]

Quantum fluctuations are the energy fluctuations of vacuum arising from the zero-point
motion of the collective modes of the condensate, due to Heisenberg’s uncertainty principle.
1957 Lee, Huang & Yang quantified this correction term starting from the Bogoliubov
transformation of a (single component) weakly interacting (non dipolar) BEC [47]:

Ĥ = E0 +
∑

q

εq b̂
†
q
b̂q (2.23)

Here E0 is the energy of the ground state, i.e. the vacuum, and b̂†
q

and b̂q are the Bogoliubov
quasi-particle creation and annihilation operators.

The density population that is depleted from the vacuum ∆n results in a shift of the
ground state energy E0, and thus in a modification of the chemical potential µ. The
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Figure 2.9: Beyond mean field stabilization: The mean field energy is reported with
the dashed line, while the corresponding LHY correction for the same as with the dotted
line. In color is presented the sum of the two contributions for different as. The direction
of the arrow indicates the increase on as [ref Famá].

calculation for a dipolar gas was first performed by by Lima and Pelster [48], and the
correction for ∆µ reads:

∆µ(r) = gqf|ψ(r)|3 with gqf =
32ga3/2

s

3
√
π

(

1 +
3
2
ε2

dd

)

(2.24)

Note that the LHY term is a repulsive term (it is always positive) and scales with the
density as n3/2.

In order to account for this beyond mean-field correction, we write extended Gross-

Pitaevskii equation (eGPE) for dipolar interactions:

µψ(r) =

(

− ~
2

2m
∇2 + Vext(r) + gn+ Φdd(r) + gqf n

3/2

)

ψ(r) (2.25)

This equation is a first order correction of equation 2.19 accounting for quantum pressure.
In general this correction is negligible (gqf n

3/2 ≪ gn+Φdd(r)) and the energy of the system
follows the dashed line of figure 2.9. However when the mean field dipolar interaction is
opposed to the mean field contact interaction, leading to a negative value of chemical
potential, the LHY contribution stabilizes the system arising the energy (dotted line)
and preventing the collapse. Therefore the system stabilizes forming a droplet with an
equilibrium density given by the minimum of the sum of the mean-field and beyond mean-
field energy contributions.

2.2.3 Phenomenology of a dipolar supersolid

The main ingredients to obtain a supersolid from a dipolar quantum gas are: 1) the
existence of a roton minimum in the excitation spectrum, which gives rise to a density
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modulation when the roton energy becomes zero; 2) the stabilizing effect of quantum
fluctuations, which prevents the system from collapsing once crossed the roton instability,
stabilizing an array of self-bound droplets. These droplets, are however typically strongly
bound and not enough mutually coherent as required in a supersolid [35].

The occurrence of a supersolid phase in a dipolar quantum gas was observed for the
first time in 2019, in the experimental apparatus where I carried out my master thesis [7].
My colleagues could spot a small range of parameters where a coherent, density-modulated
state forms after crossing the rotonic instability, presenting the ingredients required for a
one-dimensional supersolid. The main idea was to find an interaction regime of extremely
weakly bound droplets, in order to increase their capability to overlap and establish mutual
coherence. The main results are presented in figure 2.11. The momentum distribution of
the dipolar quantum gas is shown for different values of contact length scattering and for
different evolution times.

The upper panel (as = 108 a0, εdd = 1.2), illustrates the system in the "standard"
BEC regime, which remains unvaried during time. As the scattering length is lowered
to as = 94 a0 (εdd = 1.38, middle panel), a stripe modulation spontaneously emerges: the
momentum distribution shows small side peaks along the weak trap axis, with characteristic
momentum krot = 1.2(2)µm−1, close to the roton momentum predicted for an unconfined
system at the instability, krot ≈ 1.6µm−1. These side peaks in the momentum distribution
reveals that the system has broken translational invariance in the real space: a crystal has
formed. Remarkably, the shape of ñ(kx, ky) is reproducible from shot to shot for several
tens of milliseconds, signalling that the droplets composing the crystal are phase coherent.
Eventually, for long times (more than 100ms), an unmodulated BEC is recovered, due to
atom losses. For smaller contact scattering length values of as = 88 a0 (εdd = 1.47, lower
panel) instead, the shape of the momentum distribution is irregular and unreproducible
from shot to shot, suggesting that phase coherence between different droplets is lost. This
observation, supported by numerical calculations, has been interpreted as the first evidence
of a metastable supersolid state in a dipolar quantum gas.

Rapidly, these findings have been replicated by other experiments [9, 10], confirming
the phenomenon; supersolidity appears for different atomic species (it has been tested for
Dy and Er) and for different parameter values. Even though the supersolid state decays
in time due to three-body losses (I will discuss about it with more details in section 3.3.3),
its lifetime is sufficiently long (100-200 ms) to allow further experimental investigation of
the properties of supersolids.

The first property that has been investigated in a dipolar supersolid is its peculiar
excitation spectrum [11, 12, 13]. A crucial feature of a supersolid is the occurrence of
two gapless excitations, reflecting the Goldstone modes associated with the spontaneous
breaking of two continuous symmetries, introduced in section 1.1: 1) the breaking of phase
invariance, corresponding to the locking of the phase of the atomic wave functions at the
origin of superfluid phenomena; 2) the breaking of translational invariance due to the
lattice structure of the system. Such modes have been the object of intense theoretical
investigations, since the first theoretical models of supersolidity.

In trapped dipolar supersolid the excitation spectrum was studied by monitoring the fate
of the lowest compressional mode of the system - the axial breathing mode - when crossing
the superfluid-to-supersolid transition. Low-frequency compressional modes emerge natu-
rally from the hydrodynamic equations of superfluids [41]. The hydrodynamic equations
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Figure 2.10: From a BEC to a droplet crystal: Typical momentum distribution
ñ(kx, ky) after time-of-flight for different values of s-wave length scattering. Above is a
typical BEC, lowering as in the centre a SS phase, and below Incoherent Droplets. Taken
from [7].

are the direct consequence of the locking of the phase of the order parameter and are
hence peculiar to superfluid systems at low temperature. In a recent combined theoretical
and experimental investigation, the CNR-INO/LENS group has discovered that, when the
system crosses the superfluid-to-supersolid transition by tuning the interactions, the axial
breathing mode bifurcates into two distinct excitations, similar to the bifurcation of the
gapless Goldstone excitations expected for a homogeneous supersolid.

This result is plotted in figure 2.11: both the calculated (dotted lines) and the measured
(points) energy of the axial breathing mode is shown as a function of the interaction εdd. For
εdd > 1.38 the system enters in the supersolid phase (see the blue dotted line). As discussed
previously, transition to the supersolid regime is marked experimentally by the appearance
of an extra peaks in the momentum distribution. While in the superfluid regime the system
oscillates with a single frequency, the spectrum bifurcates into two different modes at the
supersolid transition, one associated with the superfluid character (blue line) and one to the
solid character (red line). The SF mode is associated with the coherent transfer of particles
between droplets and softness until it completely disappears in the droplet crystal phase.
This softening can be justified as an increase of the effective mass of the atoms moving
through the droplets, lowering the superfluid fraction of the supersolid. The higher mode
is related to the lattice deformation, in particular it is the compressional oscillation of
the droplets (crystal phonon) and survives in the droplet crystal phase. Since both SF
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Figure 2.11: Axial breathing mode: The frequency plotted versus the strength interac-
tion εdd. The different regions show the different phases, from BEC, supersolid to droplet
crystal (DC) by increasing εdd. Dotted lines are the numerically predicted frequencies.
Points with error bars are the experimental data. The theoretical frequency without con-
sidering the LHY term (grey line) becomes imaginary before entering the SF phase. The
single frequency of a SF (blue line) that arises from the gauge broken symmetry U(1) splits
into two modes when the system enters in the SS phase. The SF mode disappears in the
DC phase. The crystal mode (red line) survives in the DC phase. Taken from [11].

and crystal modes oscillates with a characteristic frequency, the supersolid oscillates with
the beating of both frequencies. The spontaneous bifurcation of the axial breathing mode
demonstrates that the dipolar supersolid is compressible as the hypothesized supersolid
helium (section 1.1), differently from the supersolids with light-mediated interactions.

2.3 Collective oscillations as probe to superfluidity

Despite supersolidity has been observed, still there no experiments have directly tested its
superfluid character, on the spirit of the original torsion oscillators experiments looking
for NCRI in solid Helium. One way to probe superfluidity in BECs is to study their time
dependent behaviour. In particular, how the system responds to an elastic stress depends
on the hydrodynamic properties of the system.

This chapter is devoted to discussing the dynamical behaviour of a condensate, with
particular interest in its collective modes when trapped. I will focus on a specific collec-
tive mode, the scissors mode, that is the oscillatory rotation of an elliptical superfluid in
response to a sudden rotation about a small angle. I will show that this mode, analog
to the torsion oscillator, permits to directly observe in a superfluid the presence of NCRI
by measuring the fraction of inertia I/Ic, thus the superfluid fraction. Precisely, I will
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start discussing non dipolar condensates, to then extend the discussion of dipolar conden-
sates and supersolids, deriving the equations that relate the scissors frequency with the
superfluid fraction.

For the sake of completeness, a full theoretical picture of collective oscillations for a
dipolar supersolid has not been made so far. Precise simulations of the scissors mode
starting from the eGPE and sum rules approach are carried by the Trento’s BEC group
[49]. An extensive treatment of collective excitations of a dipolar BEC in the Thomas-Fermi
regime can be found in [50].

2.3.1 Elementary excitations of a superfluid

The starting point to describe the dynamics of a BEC are the hydrodynamic equations.
In the following we will consider only non dipolar condensates. If we multiply the time-
dependent Gross-Pitaevskii equation (2.25) by Ψ∗(r, t) and subtracts the complex conjugate
of the resulting equation one gets the continuity equation, which ensures the conservation
of the particles number

∂n

∂t
+ ∇ · (nvs) = 0 (2.26)

where vs is the superfluid velocity of the condensate defined in (1.5). As we have seen the
velocity is proportional to the of gradient of the phase ϕ, and thus irrotational unless when
vortices are excited. The equation of motion of the velocity is the Euler equation of the
Gross-Pitaevskii equation and reads

m
∂v

∂t
= −∇

(

µ+
1
2
mv2

)

(2.27)

where the chemical potential is µ = Vext(r) + gn. This equation together with (2.26) con-
stitute the hydrodynamic equations of a superfluid.

Since the only degrees of freedom are those of the condensate order parameter, which
has a magnitude and a phase, the motion of the condensate may be specified only in
terms of a local density (magnitude) and a local velocity (phase). Hence the elementary
excitations of the condensate may be investigated by considering small perturbations of
these two quantities from the ground state density. Accordingly we write the density as
n = neq + δn, where neq is the equilibrium density and δn a small deviation. Inserting
this quantity together with a small velocity v into the hydrodynamic equations (2.26) and
(2.27) one gets

∂δn

∂t
= −∇ · (neqv) and m

∂v

∂t
= −∇δµ (2.28)

where δµ = gδn is the effect of the density perturbation on the chemical potential. In
order for this equation to be valid, the spatial variation of the density must be smooth not
only in the ground state but also during the oscillation. This is equivalent to require the
wavelength of the excitation to be much larger than the healing length. Taking the time
derivative of the first equation of (2.28) and eliminating the velocity by inserting the second
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Figure 2.12: Collective excitations with angular momentum: Different ways to add
angular momentum to a trapped condensate: a) A vortex: a density hole in which all
atoms have the same momentum; b) Quadrupole oscillation: a wave density perturbation
propagating on the surface or c) Dipole oscillation: a center of mass oscillation. Taken
from [41].

equation of (2.28) we get the equation of motion for collective oscillations of Bose-Einstein
condensates

m
∂2δn

∂t2
= g∇ · (neq∇δn) (2.29)

This equation describes the elementary excitations of a BEC with any equilibrium density.
It is remarkable to stress that here the density is the total density and not only the
superfluid density ns. If the gas is not trapped we get the usual Bogoliubov spectrum:
phonons at low momentum and free particles at higher momentum. In the following we will
consider only excitations of a condensate trapped in a harmonic 3D potential V = Vext(r).

By considering wave-like oscillations δn ∝ e−iωt of a condensate with a Thomas-Fermi
equilibrium density neq = (µ− V )/g the equation (2.29) reduces to

mω2δn = ∇V · ∇δn− (µ− V )∇2δn (2.30)

Solutions to this equation strictly depend on the symmetry of the external potential. Are
characterized by the quantum numbers nr, l and m, which states for the number of radial
nodes, total angular momentum, and projection along its rotation axis. Solutions with
nr /= 0 are called compressional modes, which lowest solution is the monopole oscillation
with nr = 1, l = 0. On the contrary, solutions with nr = 0 are called surface modes,
like the dipole oscillation (l = 1) or quadrupole oscillation (l = 2), which carry angular
momentum, as illustrated in figure (2.12) [41]. The axial breathing mode is an oscillation
that couples the monopole mode with the quadrupole mode, thus shows compression and
surface shape oscillation. The oscillation with l = 2 and m = 1 correspond to a peculiar
surface mode called scissors mode that we will discuss in the next chapter.

2.3.2 The scissors mode

Despite the occurrence of most of the collective oscillations are important consequences of
superfluidity, in general, the emergence of this phenomenon can not be considered as direct
proof of the superfluid nature of condensates. S. Stringari proposed in 1999 a conceptually
easy way to observe the occurrence of non-classical rotation inertia phenomena in ordinary
BECs through the measure of the scissors mode [14].

The scissors mode occurs in a BEC trapped in an harmonic trap with elliptical geometry,
see figure 2.13.a. It is the oscillatory rotation of the cloud in response to a sudden rotation
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Figure 2.13: Scissors oscillation: a) The scissors mode is excited by abruptaly rotate
the condensate by a small angle θ in the elliptical plane (x, y). b) Angle θ as a function of
time for a thermal gas in the collisionless regime (solid line) and for a superfluid (dashed
line). In a thermal gas the energy is equally splitted between the two frequencies. Adapted
from [14].

of an elliptical trap about a small angle. The name comes from nuclear physics, where
deformed density clouds of protons and neutrons perform an out-of-phase oscillation, thus
remembering the movement of a scissor.

If, as in figure 2.13.a, we consider a scissors mode excited in the (x, y) plane, the
density perturbation δn is proportional to xye−iωt. Inserting this particular perturbation
into equation (2.30) we get the scissors frequency of a non dipolar BEC

ωsc = ω⊥ ≡
√

ω2
x + ω2

y (2.31)

Despite the density change is the same as it would be produced by a rigid rotation
of the cloud, the behaviour of the resulting oscillation depends on whether the system
is superfluid or not. From equation (2.27), the velocity field of a superfluid varies as
v ∝ ∇(xy) = (y, x,0), thus is an irrotational motion with zero circulation, as illustrated
in figure 2.14. On the other hand, classically the velocity field depends on the interaction
regime of the atoms. Two different regimes can be distinguished: the strongly interacting
(or hydrodynamic) regime, and the weakly interacting (or collisionless) regime. In the
hydrodynamic regime the system oscillates with one single frequency, similarly to a su-
perfluid, but the excitation is characterized by a strong damping. As illustrated with a
solid line in figure 2.13.b, in the collisionless regime (which is the characteristic regime of
interactions for a quantum gas of neutral atoms) two frequencies appear at ω± = |ωx ±ωy|
. The higher mode ω+ corresponds to an irrotational quadrupole oscillation analogue to a
superfluid, while the lower mode ω− corresponds to a rigid rotation with a velocity field
proportional to (−y, x,0). This last mode is absent in a superfluid.

Is important to stress that the motion of the cloud is a “rigid” rotation around the trap
axis with a defined angle, in the sense that the shape is conserved, only if the parameter
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Figure 2.14: Scissors velocity field of a superfluid: The irrotational velocity field of a
vortex-free condensate in an elliptical trap, rotating at frequency Ω. The small arrows of
the velocity field indicate the direction of the quadrupolar flow. Taken from [51]

γ(t) = 2βθ(t) is much lower than β (or equivalently θ ≪ 1), where

β =
〈x2 − y2〉t=0

〈x2 + y2〉t=0
(2.32)

is a geometrical factor that depends on the averaged in plane density distribution of the
cloud orthogonal to the rotation1. If instead γ is larger than β the motion is a quadrupole
oscillation characterized by a change of the intrinsic shape and the connection with the
scissors oscillation is lost.

The parameter β can be interpreted as the deviation of the BEC shape from cylindrical
symmetry. Its value is zero for a perfect cylindrical cloud and continuously grows as the
cloud becomes more elongated, until in the 1D limit (〈x2〉 ≪ 〈y2〉) β = 1. The geometry
of a non dipolar condensate or a thermal gas coincides with the geometry of the trap, and
the ellipticity of the cloud is given by the in plane frequencies according to

α =
∣

∣

∣

∣

ω2
x − ω2

y

ω2
x + ω2

y

∣

∣

∣

∣

(2.33)

In this case the deviation from cylindrical symmetry coincide with the ellipticity of the
trap (α = β). In a dipolar condensate with the dipoles aligned perpendicularly to the
(x, y) plane in general one must consider also the shape variation due to magnetostriction
explained in section (2.1.4). Hence β is a function not only of the frequency traps but also
of the dipolar strength: β = β(~ω, εdd) [50].

The deformation of the trap shape has a consequence on the scissors frequency. In
dipolar condensates the dependence on the frequency oscillation from the trap frequencies

1The avarege is the usual two-dimensional space integral: 〈...〉 = 1
N

∫

dr ... n(r)
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and the dipolar strength εdd is highly non-trivial. Has been calculated by H. J. O’Dell and
reads

ω2
sc =

α

β
(ω2

x + ω2
y) (2.34)

For a non dipolar condensate where α = β one finds the previous result (2.31). If instead
the magnetostriction squeezes the cloud in the long direction, β increases and ωsc < ω⊥.

2.3.3 Non-classical rotation inertia and scissors mode

In ultracold quantum gases a direct measurement of the momentum of inertia, even more,
its deviation from the classical value Ic, is non-trivial. The general way to do it is through
I = 〈L〉/ω, by rotating the condensate and measuring the angular momentum and the
oscillation frequency. However, the direct measurement of the angular momentum induced
by the rotation of the trap is difficult in atomic gases, since most diagnostic techniques,
based on optical imaging, provide information on the density profiles, either in situ or after
the expansion of the gas. Nevertheless in deformed traps, the angular momentum is cou-
pled with the quadrupole mode: by measuring its shape oscillation - the scissors frequency
- it is possible to get information about the angular momentum, hence on the moment of
inertia [52].

Here we consider a gas initially in equilibrium within a trap rotating with frequency
Ω. At t = 0 we suddenly stop the rotation of the trap and the gas, due to its inertia,
starts a scissors oscillation in the trap frame. The angular momentum is related to the
inertia in the usual way 〈Lz〉 = ΩI/N . The starting point of our analysis is the following
commutation rule for a rotation around the z-axis

[Ĥ, L̂z] = i~m(ω2
x − ω2

y) Q̂ (2.35)

where L̂z = m
∑N

i=1(xvy − yvx)i is the usual projection of the angular momentum and
Q̂ =

∑N
i=1 xi yi is the relevant quadrupole operator. Note that an elliptical geometry

(ωx /= ωy) is a necessary condition in order to have a coupling between the degrees of
freedom of the angular momentum L̂z and the quadrupole operator Q̂. From the first and
second time derivatives of the quadrupole operator, and from the time derivative of the
angular momentum operator, we got the following equations

d

dt
〈Q〉 = 〈xvy + yvx〉 (2.36)

d

dt
〈xvy + yvx〉 = −(ω2

x + ω2
y)〈Q〉 (2.37)

1
m

d

dt
〈Lz〉 = α(ω2

x + ω2
y)〈Q〉 (2.38)

The first and second equations describe the motion of a superfluid: they constitute a
closed set of equations that brings to the scissors frequency (2.31) [52]. The third equation
describes the coupling between the angular momentum and the quadrupole operator and
applies to both a classical and a quantum gas, that is for a system with any superfluid
fraction.
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Figure 2.15: Rotational inertia in an elliptical geometry: Here is plotted the fraction
of inertia versus the temperature of a dilute ultracold gas in an elliptical trap with aspect
ratio ∼ 3:1 (β2 = 0.6), emphasizing the condensed and normal fraction contributions. Due
to the negligible quantum depletion, the condensed fraction corresponds to the superfluid
fraction and follows equation (2.6). At T = Tc the condensed fraction is zero and the
inertia is classical. By lowering the temperature the normal fraction decreases and the
inertia follows the solid line. At T = 0 the superfluid fraction is equal to unity, and the
inertia follows equation (2.41). If the system were in a cylindrical geometry (β = 0) the
condensed contribution Is/Ic would be zero at any T . Taken from [53].

The knowledge of the time evolution of Q(t) permits to calculate directly the angular
momentum 〈Lz〉. From equation (2.38) one has

〈Lz〉 = α(ω2
x + ω2

y)
∫

dωF (ω)/ω (2.39)

where F (ω) is the Fourier signal of the quadrupole operator, which is defined by 〈Q〉(t) =
∫

dωF (ω) sin(ωt). The equation (2.39) relates the scissors frequency to the angular mo-
mentum 〈Lz〉, and therefore on the moment of inertia I = 〈Lz〉/ω. From the model-
independent equation (2.37) one finds the result 〈xvy + yvx〉 =

∫

dωF (ω)ω. For a single
frequency quadrupole oscillation, such as a superfluid scissors mode, the Fourier signal
F (ω) is a delta function at ω = ωsc, and the integral is equal to the scissors frequency.
Finally using the relation 〈xvy + yvx〉 = ω〈x2 − y2〉 predicted by linear response theory
one finds the useful result

I

Ic
= αβ

ω2
x + ω2

y

ω2
sc

(2.40)

with the classical inertia defined by Ic = mN〈x2 + y2〉. This equation is a major result. In
analogy with the torsion oscillator experiment relates the value of the moment of inertia
to the scissors frequency.
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For a classical gas, the response is dominated by the low-frequency component which
is of order αω⊥ and equation (2.40) yields the rigid value I = Ic. Let us discuss the case
of a superfluid: the scissors frequency is the usual (2.34). Accordingly the momentum of
inertia (2.40) reads

I

Ic
= β2 (2.41)

This equation tells that the inertia of a superfluid is vanishing for a cylindrically symmetric
geometry and approaches the classical value as β → 1. An example of the rotational
inertia I/Ic of a non cylindrically symmetric quantum gas above and below the critical
temperature Tc is illustrated in figure 2.15. The figure emphasizes the thermal Ith/Ic

and condensed Is/Ic contribution to the total rotational inertia. Since in a dilute BEC
the quantum depletion is negligible, the condensed fraction corresponds to the superfluid
fraction fs = nc. At T = Tc the inertia is classical, while at T = 0 the inertia is the
expected from a perfect superfluid (2.41) with β2 = 0.6.

It is worth to stress that the result (2.41) is valid only for a perfect superfluid, that
is with a superfluid fraction equal to unity, which is the case of a dilute Bose-Einstein
condensate. However, equation (2.40) is completely general, so it can be used to estimate
I/Ic also in a supersolid, where the modulation of the wave function lowers the value of its
superfluid fraction, as seen in section (1.2.4). In this case the fraction of inertia would be
higher than β2. Hence, by combining the geometry contribution (2.41) with the definition
of superfluid fraction, equation (1.9), it is possible to write a more general equation for the
moment of inertia

I

Ic
= (1 − fs) + fsβ

2 (2.42)

To sum up, let us itemize the possible cases:

• fs = 0 → I/Ic = 1 → Classical case

• fs = 1 → I/Ic = β2 → Superfluid case

• 0 < fs ≤ 1 → I/Ic = (2.42) → Supersolid case

It is now possible to relate the fraction of momentum of inertia of a superfluid with its
scissors frequency, even when fs /= 1. Inserting equation (2.34) into (2.42) and solving for
fs we obtain

fs =
1 − I/Ic

1 − β2
=

1 − αβ(ω2
x + ω2

y)/ω2
sc

1 − β2
(2.43)

Naturally a dilute BEC oscillates with the single frequency (2.34) and equation (2.43) yields
fs = 1. On the contrary if a gas with the same trap geometry α and density distribution
β oscillates with a slower frequency, this implies a larger fraction of inertia and equation
(2.43) yields to a lower superfluid fraction.
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Chapter 3

Obtaining a dipolar supersolid

In this chapter, we present the ingredients to obtain a dipolar supersolid. We will first
introduce the main characteristics of 162Dy, the strongly magnetic element we use to pro-
duce a dipolar supersolid. Then we will give a short introduction to the cooling techniques
employed to achieve a BEC of Dy atoms, and the experimental strategy implemented to
obtain a dipolar supersolid. Finally, we will explain how we fit the supersolid, and its main
characteristics, such as elementary excitations and the lifetime.

3.1 Dysprosium

Dysprosium is a rare-earth element that belongs to the group of lanthanides, showed in
figure 3.1. The atomic number is 66, it melts at 1412°C at atomic pressure and it boils
at 2560°C. Dysprosium possesses seven stable isotopes with different abundances. The
isotope in which we are interested in is the boson with 96 neutrons, the isotope 162, whose
abundance is about 25.5%. The choice dysprosium for our experiment must be searched
in its high intrinsic magnetic dipolar moment, which is of µm = 9.93µB, the highest
between all atomic elements. It is precisely this high dipolar moment responsible of strong
dipolar interactions, that permits the characteristic modulation of the wave function of the
supersolid. To understand where this high magnetic momentum comes from, we have to
look at its electronic structure.

The 66 electrons of dysprosium lead to the electronic configuration of [Xe]4f106s2,
which is a submerged-shell configuration, where the 6s shell is inside the 4f shell. While
the s orbital is completely filled, the f one is not. This leads to a complex electronic
structure with a large orbital angular quantum number of L = 6 and an electronic spin of
S = 2, resulting in a total angular momentum of J = L+ S = 8. The resulting electronic
ground state has a term symbol 5I8. It is precisely this ground state that brings to a lot
of interesting characteristics, including its high intrinsic dipolar moment.

The intrinsic dipolar moment, together with the mass of 162Dy of m = 161.93 a.u.,
provides a value of the dipolar length scattering (2.13) of approximately

add ≃ 130a0 (3.1)

Considering its s-wave background length scattering abg ≃ 92a0, results in a background
dipolar strength of approximately εdd ≃ 1.42.
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Figure 3.1: Dysprosium: Above: The periodic table of elements. Pink borders highlight
the elements that have been successfully condensed. The color represents the dipolar char-
acter of each element. Red indicates the highest, blue the lowest. Below: The dysprosium
element is characterized by a metallic silver luster. It is never found in nature as a free
element, thus it must be isolated from other minerals such as Xenotime.

Another consequence of the complex electronic structure is a dense energy spectrum,
partially shown in figure 3.2. This character derives from the possibility of exciting an
electron of the s or f orbital equally likely. The most useful transitions to cool the atoms
are the optical transitions at 421 nm and at 626 nm. The first one is a broad transition
with a linewidth of Γ421 = 2π × 32.2 MHz. It is used in the Zeeman Slower and in the
Transverse Cooling, as well as in the absorption imaging. Since the thermal velocity of
the atoms is ∼ 450 m/s, with a broad dispersion due to the high melting temperature of
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Figure 3.2: Experimental apparatus: Here are illustrated the main parts that constitue
the vacuum chamber. The transitions in which we are interested are the broad transition
at 421 nm (Blue) and the narrow transition 626 nm (Red).

Dy, the broad character of this transition suites to first slow down the atoms coming out
from the oven. The second transition has a narrower linewidth of Γ626 = 2π × 136 KHz
and is used in the Magneto Optical Trap (MOT). Due to its narrow character it provides
extremely cold MOT (Doppler temperature of about 6 µK).

3.2 Experimental setup

In this section, we give an overview of the setup and the steps used to create a degenerate
gas and subsequently a dipolar supersolid of dysprosium. It includes basic of light-matter
interaction, laser cooling, and evaporative cooling in optical dipole traps. The main steps
are:

• Creation of a thermal atomic beam via sublimation of crystalline dysprosium.

• Collimation of the atomic beam with a transverse cooling (TC) and deceleration of
the atomic beam with the Zeeman slower (ZS).

• Cooling and trapping in a magneto-optical trap (MOT).

• Trapping and evaporative cooling in a large-volume resonator-enhanced optical trap.

• Transfer of the atom in a crossed optical dipole trap, and forced evaporation to
quantum degeneracy.

• Tuning of the experimental parameters to create the supersolid and to excite it.
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• Detection of properties of the system via time-of-flight absorption imaging.

All this procedure is done in a vacuum chamber that protects the atoms from the envi-
ronment. As illustrated in figure 3.2, the setup consists of 4 main parts: the effusive cell
heated up by an oven, the transverse cooling chamber, the Zeeman slower arm, and the
experiment chamber. But first, let us give a brief theoretical introduction of light-matter
interaction.

3.2.1 Light-matter interaction

In the following treatment, we will consider an atom with two levels in an electromagnetic
field produced by laser light. In the two-level approximation, the atom is described as a two-
level system where only closed transitions are possible. When the atom absorbs a photon,
the atom gets excited and acquires its momentum. Subsequently, the atom spontaneously
decays in the ground state emitting the photon in random direction. The force that the
light field imprints on the atom depends highly on the relative energy between the photon
and the two-level transition. For resonant interactions ω21 ∼ ωL the force is dissipative
and brings to the phenomena of Doppler cooling. For off-resonant interactions ω21 ≪ ωL

(≫) there is no absorption/emission of photons. Instead the light produces an induced
dipole on the atom that allows its trapping in a conservative potential [40].

Resonant interaction

When an incident photon interacts with an atom, if the frequency of the photon is approxi-
mately the frequency of the atom transition the atom absorbs the photon and gets excited.
This process preserves the energy ~ωL and the momentum ~k of the photon. Therefore
the atom gets a kick in the direction of the photon, then spontaneously decay emitting the
photon in random direction with spherical symmetry. For an atom moving in the opposite
direction of the laser, the average result is to lower its velocity. This phenomenon is called
radiation pressure. The force that the photon imprints on the atom is

Fscatt =
∆p
∆t

= ~kΓscatt (3.2)

where Γscatt is the scattering rate, i.e., the number of photons absorbed in the unit time.
As every absorption is followed by an emission Γscatt = γρ22 where γ is the linewidth of the
excited state and ρ22 its population. For a laser with intensity I and detuning δ = ωL −ω21

the scattering rate reads

Γscatt =
γ

2
S0

1 + S0 + (2δ
γ )2

(3.3)

where S0 = I/Isat is the saturation parameter of the transition, i.e., the parameter at
which by increasing the intensity, the scattering rate does not increase consequently. In
general, the detuning depends on the relative velocity of the atom. Thus the Doppler shift
on the frequency must be considered and the detuning reads: δ = ωL − ω21 − k · v. The
maximum force that can be implemented to an atom is in the resonant condition (δ = 0)
and S0 ≫ 1. It reads

FMax
scatt =

~kγ

2
(3.4)
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is equivalent to say that the atom acquires a momentum ~k in the time necessary to absorb
a photon t = 2/γ.

The scattering force is a fundamental property that - among other things - permits to
cool atoms. By integrating a system with 6 laser beams - 2 per axis - all directed in the
same point, and appropriate magnetic fields, it is possible to cool atoms at Doppler and
Sub-Doppler temperatures. This mechanism is at the base of the experimental techniques
of the ZS and the MOT.

Dipole interaction

When the detuning is large, the interaction is not related to the absorption/emission of
photons but the field induces a dipole polarization of the electronic structure of the atom,
which oscillates with the same frequency as the electric field. A full theoretical treatment
uses the dressed atom picture in which the atom and the photon are considered all together.
In the dipole approximation, the interaction can be written as

V (r, t) = −d · E(r, t) (3.5)

where d is the electric dipole operator for a single atom and E is the electric field. If the
time averaged electric field varies with position, the shift on the energy due to the field
gives rise to a force

Fdipole = −∇V (r) =
1
2
α′(δ)∇〈E(r, t)〉t (3.6)

where α′(δ) is the dipole dynamic polarizability. At low frequencies δ < 0 (red detuning)
the polarizability is positive, and the dipole moment is in the same direction as the electric
field. Therefore for frequencies below the resonance, the force is towards regions with a
high electric field. On the other hand for frequencies higher than the resonance δ > 0 (blue
detuning) the induced dipole is in the opposite direction and the force is towards regions
with a low electric field.

By focusing a laser beam is it possible to create a radiation field whose intensity has a
maximum in space. If the frequency of the light is red detuned with respect to the transition
the atom feels an energy minimum in space. Therefore it is possible to trap atoms in the
so-called Optical Dipole Traps (ODT). Most of the laser beams have a gaussian intensity
profile

I(r, z) =
2W
πw2

o

1
1 + ( z

zR
)2
e

− 2r2

w2(z) (3.7)

where z is the propagation direction of the beam, r the radial plane perpendicular to z,
W the power, w the beam waist in a generic z position, zR the Rayleigh distance and w0

the beam waist at the focus position. Thus atoms feel a gaussian potential that leads to a
gaussian spatial distribution

n(x, y, z) = n0e
−

(

x2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)

(3.8)

As the intensity of the laser is proportional to the power W of the beam, and inversely
proportional the waist w2

0, to create an ODT are necessary high powers, focused beams
and large red detuning.
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Obtaining a dipolar supersolid

The force that permits optical traps is conservative, thus it does not cool atoms. How-
ever, by slowly lowering the beam power, the most energetic atoms leave the trap, decreas-
ing the average energy per particle. This mechanism is at the basis of evaporative cooling,
which is the last cooling procedure, essential to reach quantum degeneracy.

3.2.2 Obtaining quantum degeneracy

Effusion cell and Zeeman slower

This part describes the travel of the atoms from the solid phase to the MOT in the ex-
periment chamber. First, a high purity sample of few grams of dysprosium in its solid
crystalline phase is placed into the oven. The effusive oven cell is maintained at a pressure
of ∼ 10−7 Torr. By heating up the oven at T ≃ 1200 ÷ 1250°C, the atoms sublimate to
the gas phase. The atomic beam spreads out of the oven in all directions, with a thermal
velocity of ∼ 450 m/s. As the experiment chamber is maintained at Ultra-High Vacuum
(UHV) with an increasing differential vacuum from the Transverse cooling to a pressure of
< 10−10 Torr, most of the atoms spread in the direction of the experiment chamber. Since
the MOT can trap atoms at velocities of a few m/s a first cooling step must be imple-
mented. The first two cooling methods are transverse cooling and Zeeman slower. Both
use the same blue laser source at 421 nm, generated by a frequency doubled Ti:Sapphire.
The transverse cooling is a two-dimensional optical molasses that slows the atomic beam
in the plane perpendicular to the Zeeman slower arm. Besides lowering the temperature,
it increases the capture efficiency of the ZS. The overall power of the TC is ∼ 75 mW, it
is divided in 2 retro-reflected outputs, with a detuning of ∼ −3 Γ421. On the other hand,
the ZS uses ∼ 150 mW of power in an elliptical molasses with a detuning of ∼ −32.8 Γ421.
These two techniques permits to slow the atoms from a velocity of 450 m/s to ∼ 10 m/s.
At the end of the ZS and right before the MOT a compensation magnetic field is produced
by rectangular coils in quasi-Helmotz configuration to compensate the field emerging from
the ZS itself.

Magneto optical trap

Atoms are now ready to be loaded into the MOT. A scheme of a MOT is illustrated in figure
3.3. The MOT consists of three retro-reflected laser beams at 626 nm and two circular
coils in the vertical axis placed in an anti-Helmotz configuration that generates a linear
magnetic field gradient parallel to the plane. The light at this wavelength is obtained by a
compact diode laser device by Toptica. The horizontal beams have a power of ∼ 65 mW
and the vertical of ∼ 90 mW. The MOT operates in two subsequent stages. In the first
loading stage, the capture velocity of the MOT is artificially increased by a modulation of
the laser frequency via AOMs, with a detuning of ∼ −35 Γ626. In the second compression
stage, the modulation is switched off and the detuning is set closer to the atomic resonance
(∼ −8 Γ626) together with a decrease of the intensity, to maintain a sufficient confining
force, to increase the phase space density. After the compression, the typical atom number
in the MOT is of ∼ 6 × 107, with a gaussian RMS width of 450 µm in the horizontal plane
and 150 µm in the vertical plane. The typical temperature at this stage is ∼ 15µK.
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Figure 3.3: Magneto optical trap: Schematic rapresentation of a MOT. The atom beam
coming from the Zeeman slower converge in the center of the MOT loading the atoms on
it. The circular coils creates a quadupole magnetic field using the so-called anti-Helmotz
configuration.

Resonator-enhanced optical dipole trap

After the MOT compression the atoms are loaded in a large-volume optical trap enhanced
by an in-vacuum optical resonator. This trap is realized by a standing wave pattern inside
an optical resonator, produced by a single-mode Nd:YAG laser at 1064 nm. The resonator
permits to amplify the power of the seeding beam about 1000 times. Therefore we achieve
large trapping volumes and trap depths without employing high power multi-mode lasers,
which tend to cause heating and losses [ref]. Since the polarizability of dysprosium with
light at 1064 nm is α′ = 184.4 a.u. [ref Grimm], 1W of power permits to create a trap depth
of 200 µK with a waist of 320 µm. Since the resonator creates a standing wave, it produces
a periodic lattice superimposed to the atomic system with periodicity λ/2 = 534 nm. At
the end of the compression stage, the power of the resonator is ramped up (stage I in
figure 3.4) while the atoms coming from oven cell are blocked by a pneumatic shutter. The
geometrical superposition is optimized by changing the MOT position with small magnetic
bias fields. The resonator reaches a loading of 3 × 107 atoms at a temperature of ∼ 30µK.

Optical dipole traps

At this point atoms are evaporated in the resonator up to typical temperatures of 4 µK
with few-millions atoms. During the evaporation, atoms are loaded into ODT1, an optical
dipole trap with a circular waist of 41 µm and a power of 1.5 W. The evaporation sequence
is shown in figure 3.4 (stage II). It consits in turning on ODT1 while slowly decrease the
power of the resonator in 2 seconds. Because of the impossibility of superimposing exactly
the resonator with ODT1, the loading is optimized by positioning with an angle of 8°.
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Figure 3.4: Experiment sequence: a) schematic of the resonator (red) and ODT1 (green)
and ODT3 (blue). The angle between the resonator and ODT1 is 8°. b) Power of the
traps and phase space degeneracy (PSD) through the experimental cycle. The sequence is
divided into 4 stages: (I) MOT compression and resonator loading, (II) evaporation in the
resonator, (III) the resonator is off and atoms are in ODT1-ODT3, and (IV) at the end of
the evaporation in ODT1-ODT2 the gas reaches quantum degeneracy.

When the resonator is almost off and atoms are trapped in ODT1 the power of a second,
elliptical dipole trap (ODT2) is ramped up (stage III). This trap is positioned with an angle
of 40° with respect to ODT1. The horizontal (vertical) waist is of 81 µm (36 µm), with
an initial power of 2.6 W. With these two traps it is possible to confine the atoms in the
3 directions. Finally, the atoms are further cooled by evaporation by slowly lowering the
power to PODT1 = 50mW and PODT2 = 800mW (stage IV), where quantum degeneracy
is reached and a BEC is achieved.

The two optical dipole traps are constructed to have the stronger confinement along
the vertical axis, the direction of the polarization, to satisfy the stabilization condition (see
section 2.1.4). Typical final frequencies are ωx,y,z = 2π× (20, 60, 90) Hz, with λ ≃ 1.4. All
the intensity lasers used are tuned by means of AOMs and stabilized with a feedback loop.

3.2.3 Imaging

All information on atoms is obtained by absorption imaging. It is performed by a camera
positioned above the experiment cell that sends blue light (421 nm) on the atoms, imaging
the horizontal (x, y) plane. Absorption imaging completely destroys the atom cloud.

The imaging procedure consists of three images in rapid sequence. The first one (Img1)
sees the shadow created by the atoms, the second one (Img2) takes a picture of the light
present in the chamber without the atoms, including the lasers, and in the third one (Img3)
the beams are turned off and only the background light is captured.

The images can be taken both in situ, that is only a few ms after the shut off of the
traps, or after a variable time of free expansion, called time-of-flight (TOF). From the
intensity of the light in the pictures can be extrapolated the column density distribution
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3.3 – Observation of a dipolar supersolid

Figure 3.5: Column density distribution: Image of a BEC in false colors and density
profile. The colors indicates optical thickness, with red as the higher and blue the lowers.
The density profile (in blue) is fitted with a 1D gaussian function (red).

of the atoms

Img = − ln

(

Img1 − Img3

Img2 − Img3

)

=
∫ z

0
n(x, y, z)σI (3.9)

where n(x, y, z) is the 3D density of the cloud, σ the cross-section between the atoms
and the laser that takes into account the scattering probability and I is the light intensity.
Thus absorption imaging in the z-direction is equivalent to a measure of the column density
distribution of the atoms. Considering a gaussian like density distribution, the image is
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(3.10)

By fitting the image with a two-dimensional gaussian function with a certain amplitude A

it is possible to obtain the total number of atoms with N = 2πσxσyA/σ. Typical atoms
number is 1 ÷ 5 × 104. Note that to convert pixels of the image into actual physical
quantities a conversion of the units must be carried.

As every image sequence is destructive, to study the evolution of the atoms in the trap
or the physics of the expansion the images must be taken at different times, and then
reconstruct the position.

3.3 Observation of a dipolar supersolid

3.3.1 Supersolid production

Following the sequence of section 3.2.2, a polarized BEC is produced with a typical atom
number of 3.5 × 104. The trap frequencies that result from the contribution of the super-
imposed ODT1-ODT2 are ωx,y,z ≃ 2π × (20, 60, 90) ± 2 Hz, with an in-plane aspect ratio
ωy/ωx = 3. This gives an alpha value of α = 0.6. (figure 3.6.a)

The condensate is initially created at the background scattering length abg = 157(4) a0.
We employ a specific set of three Feshbach resonances located at B1 = 5.145 G, B2 = 5.231
G, and B3 = 5.244 G to tune the scattering length. The widths of first and second FRs are
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Obtaining a dipolar supersolid

Figure 3.6: Supersolid production: a) The resulting optical dipole traps produces an
effective potential with an in-plane aspect ratio of 3:1 and a strong confinement in the
polarized z-axis. b) Contact scattering length versus the magnetic field. The blue-solid
line represents the best estimate for as(B). The blue region sets the limits confidence, given
the experimental uncertainty. The red-solid line is the conversion of as(B) used throughout
the paper, obtained by comparing experimental and theoretical observations. Taken from
[7].

∆B1 = 32 mG and ∆B1 = 8 mG respectively, while the third one is of order of 1 mG [7].
The resulting dependence of the scattering length with the magnetic field is illustrated in
figure 3.6.b. Considering the dipolar scattering length of dysprosium of add = 130 a0, the
condensate has a dipolar strength of εdd = 0.83. The s-wave scattering length is then tuned
with a 70 ms linear ramp to as = 114 a0 (εdd = 1.14), close to the supersolid transition.
The transition, at these frequencies and atoms number, is located around εdd = 1.38, which
correspond to as ≃ 94 a0. After the first ramp, a secondary linear ramp of 30 ms brings
the system in the supersolid regime. The systematic uncertainty on as of about 3a0 gives
an uncertainty on εdd of 3%.

The transition BEC-SS is crossed as adiabatically as possible, i.e., slow enough to
prevent exchange of energy between the apparatus and the atoms. However, the crossing
of the phase transition naturally excites in the supersolid regime the axial breathing mode.
The typical amplitude of this breathing oscillation on the supersolid width is about 10%.
Even tuning the scattering length ramp parameters, we cannot avoid this small excitation
of the system. This amplitude is, therefore, the minimum accessible to the supersolid. The
oscillation is revealed by monitoring the width momentum distribution in the x-direction
ñ(kx) after a TOF expansion. This naturally triggered oscillation was use to probe the
character of the excitation modes in a dipolar supersolid (see section 2.2.3).

3.3.2 Supersolid analysis

A non-interacting Bose-Einstein condensate with a certain in trap Gaussian distribution
n(x, y), when released expands with a velocity distribution according to the uncertainty
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3.3 – Observation of a dipolar supersolid

Figure 3.7: Momentum distribution of a dipolar supersolid: two dimensional ab-
sorption images after TOF at 3 different evolution time 25 ms, 40 ms and 95 ms (lower
panels) and related fits of the one-dimensional distribution n(kx) with the function (3.16).
Adapted from [7].

principle

vi =
~

mσi(0)
(3.11)

where σi(0) is the confinement of the condensate in the i-direction. Considering the ground
state of the harmonic oscillator, the confinement is given by the trap frequencies by the
oscillator length aho,i =

√

~/mωi. The width at a time t after the release reads

σ2
i (t) = σ2

i (0)(1 + ω2
0,it

2) (3.12)

for t2 ≫ 1/ω2
0 the shape of the condensate is determined only by the trap frequencies.

Therefore given an initial Gaussian-like density distribution, acquiring the image in TOF
corresponds to observe the momentum distribution of the condensate ñ

n(x, y) → TOF → ñ(kx, ky) (3.13)

As we discussed in section 2.2.3 the supersolid corresponds to a modulated BEC in
the x-direction with the phase locked throughout the cloud. The distribution along the
modulation ñ(kx) after the free expansion of the cloud can be modeled with a multiple slit
function, where the slits correspond to density peaks, i.e. coherent droplets. Our current
resolution prevents us from estimating if more than two stripes are present.

The resulting distribution is the product of the interference pattern with the diffraction
pattern I = IintIdiff . The double-slit interference of an incident plane wave at a distance
d fixes the position of the fringes according to

Iint = I0 cos2

(

πd sin θ
λ

)

(3.14)
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while the single-slit diffraction with width D modulates the peaks amplitude according to

Idiff = I0 sin2

(

πD sin θ
λ

)/(

πD sin θ
λ

)2

(3.15)

where θ is the propagation angle of the scattered wave from the center of the incident
beam. However, our cloud is slightly different from a homogeneous plane wave propagating
through well defined and fixed slits. The interference pattern must take into account the
original background density distribution of the trapped atoms, therefore the fit must be
modulated with a Gaussian. Secondly, some of the background distribution remains and
it is necessary to sum a Gaussian with the modulation in the fit. And ultimately, while
the distance between the droplets (slits) is fixed (d ≃ 1/krot), their position throughout
the cloud varies from shot to shot. It is like the incident wave hits the slits with a different
phase each time. The interference pattern is “moved” using a phase φ. The final fit function
reads

ñ(kx) = C0 e
−(kx−k0,x)2/2σ2

x

[

1 + Ak cos2

(

π

k
(kx − k0,x) + φ

)]

(3.16)

where k0,x is the center of the cloud, σx its dimension after the expansion, C0 the amplitude
of the background Gaussian and C0Ak the amplitude of the stripes with period k. The
interference amplitude Ak provides information on the depth of the density modulation.
The interference phase φ provides instead a measure of the robustness of the stripe pattern,
both in what concerns the phase locking between the stripes and their relative distances.
An example of the fit is shown in figure 3.7.

The modulated term is essentially the Fourier transform of the in-trap lattice, while
the background Gaussian is related to the unmodulated component of the in-trap density.
Because of the non-trivial expansion of a dipolar gas, in particular, due to the interaction
term in the Hamiltonian, it is not possible to analytically relate the in trap density to the
distribution in k space.

3.3.3 Lifetime of a dipolar supersolid

As illustrated in figure 3.8.b, when the transition BEC-SS is performed, the modulation
pattern grows till the metastable value of A ≃ 0.5 with an exponential increase in approx-
imately 10 ms. The modulation remains stable for ∼ 30 ms and then decreases until, over
100 ms, the characteristic supersolid pattern disappears (third image of figure 3.7). The
loss of modulation is caused by the decrease of the atom number (figure 3.8.a), which has
the effect of leveling the droplets. This loss of supersolid character is, however, not related
to the loss of phase coherence since the latter remains high at any time despite quantum
and thermal phase fluctuations, and the axial breathing oscillation [7].

The main contribution that diminishes the number of atoms of a degenerate gas is the
phenomena called three-body losses. This phenomenon is an inelastic scattering process
consisting of the interaction among three atoms, resulting in one molecule and one free
atom.

3Dy → Dy2 + Dy (3.17)

Two atoms can not combine directly, because, to get rid of the momentum and the energy
released from the molecule binding energy, a third atom needs to participate in the process.
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Figure 3.8: Atom number and modulation pattern: a) The lifetime of a supersolid is
about 100 ms. The number of atoms follows an exponential decay: N(t) = N0 exp(−t/τ),
with decay rate τ ≃ 100 ms. The shaded areas show the dynamical simulations for a SS
(blue) and ID (red). b) Time evolution of the interference amplitude A in the supersolid.
The dashed line is an exponential fit to the initial (t ≤ 10 ms) growth. The error bars
represent the standard deviation of about 40 measurements. Taken from [7].

The binding energy is transformed into kinetic energy that results in the loss of the molecule
and the atom. For a thermal gas, the rate of the recombination is

dn

dt
= −K3n

3 (3.18)

where K3 is the three-body recombination coefficient of the species considered. Seems
natural that the process is proportional to the third power of the density. The probability
of a single particle to be in a certain volume V is proportional to n. Thus for three particles
is proportional to n3.

By integrating (3.18) and considering that in a BEC due to indistinguishability of
particles the three-body coefficient is only the sixth part of the thermal coefficient, we get

1
N

dN

dt
= −K3

6
〈n2〉 (3.19)

the decay time of the condensate is therefore τloss = 1/K3〈n2〉. The value of the three-body
coefficient of 162Dy is KBEC

3 = 1.5 × 10−27 cm6/s [7].
Since the three-body losses is proportional to 〈n〉2 phenomenon limits the peak density

of the system. In a BEC the majority of losses happen in the central region, while in a
SS or ID in the center of the droplets. With the value of decay rate and K3 coefficient
it is possible to calculate the mean density 〈n〉 ≃ 5 × 1014cm−3. This is about 10 times
larger than the calculated BEC density, suggesting that, in both modulated regimes, the
Lee-Huang-Yang (LHY) repulsion has a stabilizing role.
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Chapter 4

Observation of NCRI in a
dipolar supersolid

The central result of this thesis is reported in this chapter: the observation of a reduced
moment of inertia (NCRI) when a trapped dipolar supersolid of 162Dy is excited through
the scissors mode. From the measured moment of inertia, we infer a superfluid fraction
which is different from zero and of the order of unity, providing direct evidence of its
superfluid nature.

The first section of this chapter is devoted to discussing the methods employed to
excite the scissors mode of a BEC and a SS in order to unveil their superfluid behavior.
We analyzed the time-of-flight images to get information on the shape evolution and the
scissors frequency of the gas.

The finite temperature analysis of the scissors mode performed in section 4.2.2 shows
that, while the BEC oscillates with a single frequency, a thermal cloud oscillates with two
frequencies, as expected from section 2.3.2. This confirms the collisionless regime of our
system, hence its truly superfluid character.

Once confirmed the superfluid nature of the sample, using the procedure explained in
section 3.3.1, we investigate the scissors oscillation in the supersolid phase. We observe a
reduction of the scissors frequency, pointing to an increase of the fraction of the rotational
inertia. Subsequently, from the measured scissors frequency and a numerical estimation
of the system’s deformation β, we extract the moment of inertia and we infer a superfluid
fraction different from zero and of order of unity. We also compare the superfluid fraction
with the theoretical Leggett’s prediction introduced in section 1.2.4.

The scissor mode of the incoherent droplet crystal has not been investigated because
of its short lifetime due to three-body losses [7], although, following Leggett’s criterion, an
almost zero superfluid fraction is expected [49].

4.1 Exciting the scissors mode

Our experiment starts with a dipolar quantum gas trapped in an harmonic trap with vari-
able trapping frequencies (I will discuss later how we choose the final trapping frequencies).
As shown in figure 3.6.a the dipoles are oriented in the z-direction by a magnetic field B,
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Figure 4.1: Typical scissors frequencies in a trap with aspect ratio 3:1 Above, a
BEC with εdd = 1.3 oscillates with ωsc = 0.93ω⊥. Below a SS with εdd = 1.45 oscillates
with ωsc = 0.95ω⊥. Considering a value of ω⊥ ≃ 65 Hz, this implies a very low difference
in the frequency, at the limit of our experimental sensibility of 1-2 Hz.

which we use also to tune the contact interaction, through a Feshbach resonance. Our
purpose is to imprint an oscillation of the cloud in the (x, y) plane and let it evolve for
a variable time t, to study the evolution of the in-trap angle θ(t) from which can be ex-
trapolated the scissors frequency ωsc. Since in the supersolid phase different modes are
extremely coupled (as shown in section 2.2.3), particular attention has been paid to avoid
an excessive excitation of the modes other than scissors. In the following I will describe in
detail our excitation scheme.

4.1.1 Choice of experimental parameters

Our purpose is to observe the difference in the rotational inertia I/Ic between the super-
solid and a classical system by measuring the scissors frequency. As explained in section
1.2.4, a perfect superfluid rotates with a classical inertia when the value of β approaches
unity (equation (2.41)). As predicted from Leggett (section 1.2.4), a supersolid behaves in
between a perfect superfluid and a rigid body, since its superfluid fraction is smaller than
one. Hence, if we want to appreciate the difference when I/Ic changes from a BEC to a SS,
we need to study the scissors oscillation of a BEC only weakly deformed (with β ≪ 1). As
discussed in section 3.3.1 we create the condensate using the optical traps ODT1-ODT2,
with typical in-plane frequencies (ωx, ωy) ≃ 2π× (20, 60)Hz. The aspect ratio is 3:1, which
corresponds to a geometry factor α = 0.8. Since for our values of as the magnetostriction
sets a value of β higher than α, we have that I/Ic = β2 > α2 is very close to one. Hence,
when we measure the scissors frequency in the BEC regime, we cannot distinguish it from
a rigid body rotation (within our experimental error bar of 1-2 Hz). It will be therefore
impossible to experimentally distinguish the rotational inertia of a supersolid from that
of a supersolid. In figure 4.1 it is shown the scissors frequency of a BEC and a SS, in
this trap configuration. We observe that their frequencies are very similar, namely about
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Figure 4.2: Scheme of the optical beams of ODT2 and ODT3 In blue (red) is
showed the path of the beam that generate ODT2 (ODT3) from the optical fiber to the
experimental chamber. The trap frequencies are ωx,y,z ≃ 2π(23,46,90) Hz.

ωsc ≃ 0.93 ÷ 0.95ω⊥. Therefore we need to diminish the value of α by changing the trap
frequencies to appreciate a difference in the rotational inertia.

To increase the frequency contrast between the superfluid and the supersolid regime we
choose to change the aspect ratio from 3:1 to 2:1. This aspect ratio is achieved with trap
frequencies of (ωx, ωy) ≃ 2π × (23, 46)Hz while keeping the confinement along the z-axis
unchanged (ωz ≃ 2π × 90 Hz). Obtaining this aspect ratio with the laser beams ODT1-
ODT2 was not possible. Since the two traps are not orthogonal (the angle between them
is ∼ 40°), it is difficult to change independently the frequencies in the plane. Therefore we
have chosen to implement a third optical dipole trap (ODT3).

The ODT3 is generated with the same Nd:YAG used for the ODT2. The two optical
dipole traps are independently controlled by two different acoustic optical modulators
(AOMs), which also detune their wavelengths for avoiding interference between the two
beams. They are also both stabilized in power by feedback loops. The waist on the atoms
of the ODT3 is 80µm. A picture of the two beams path on the experimental table is is
illustrated in figure 4.2.

After the cloud is condensed with the procedure explained in section 3.3.1, we turned on
the ODT3 with a 100 ms linear ramp and then and turned off ODT1 with, again, a 100 ms
linear ramp. In the new optical trap α = 0.6 and the BEC-supersolid transition is located
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at εdd = 1.42 (not at εdd = 1.38 as in the previous trap). In the BEC regime β varies due
to magnetostriction from β = 0.7 at εdd ∼ 1.3 to β = 0.75 near the transition line. Beyond
the transition, simulations gives a value of β ∼ 0.8 right after the transition up to β ∼ 0.95
near the incoherent droplets transition. Therefore, following equation (2.34) we expect the
scissors frequency to fall up to 10% from the BEC to the SS regime.

4.1.2 Excitation methods

After we have the condensate in the traps ODT2 and ODT3, we adiabatically tune the
scattering length through Feshbach resonances to the desired value of the interaction pa-
rameter εdd in the range 1.2÷1.5, depending on the phase willing to study. Then we excite
the scissors mode imprinting a rotation of the cloud in the (x, y) plane with two different
techniques for the BEC and the SS.

The first excitation method consists of switching on momentarily (5 ms) the trap ODT1.
The second method excites the scissor mode by changing temporarily (5ms) the intensities
of the optical traps ODT2 and ODT3. As the two traps are not perfectly orthogonal
(θ ≃ 80°) the atom cloud starts to oscillate. The second method is more gentle than the
first one. Let’s explain what we intend with this sentence.

The first technique imprints a large amplitude oscillation on the angle, namely about 0.3
rad after the expansion. Hence, it provides a good resolution of the scissors frequency ωsc.
Nevertheless it also excites the axial breathing mode of about 20%. In the BEC regime,
since the axial breathing mode and the scissors mode are normal modes, the evolution
of θ(t) does not depend on the amplitude of the axial mode [52]. We have proven this
supposition by exciting the axial breathing mode in the BEC regime from 10% to 40%
finding no shift in the measured scissors frequency, which is always consistent with the
prediction (2.40).

In the supersolid phase instead, the two modes are not normal modes, indeed they are
coupled and one influences the evolution of the other [11]. We already explained in section
3.3 that the adiabatic crossing of the BEC-SS transition excites the axial breathing mode
of about 10%. Interestingly, as it is shown in figure 4.3 (blue points), if we excite the SS
with the first method, we see a rise in the scissors frequency toward the BEC value. It
looks like the supersolid lattice is averaged out and the system is fully superfluid.

The second method imprints instead a lower amplitude oscillation on the scissors mode,
namely about the 50 mrad. Thus, when we excite the SS with this technique, the resolution
on the measure of the frequency is lower than the first method. Nevertheless, with a small
excitation of the scissors mode, also the axial breathing mode is excited very little. Indeed,
we see only a ∼10% amplitude oscillation of the latter, as when the scissors oscillation is
not excited at all. As it is shown in figure 4.3 (orange points), we observe that when the
axial breathing mode is excited by approximately 10% the the scissors frequency decays
abruptly in the supersolid phase and is much lower than what is expected for a BEC. These
results will be commented more in detail in section 4.3.1.
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Figure 4.3: Scissor oscillation with the axial breathing mode: Here is plotted the
scissors frequency vs dipolar interaction strength. The scissors is excited by lighting 5 ms
the ODT1 (blue dots) or by changing the intensity of the traps ODT2-ODT3 (orange dots).
The scissors excited with the first method oscillates tith the same frequency at the value of
a perfect superfluid, while the scissors excited with the second method shows a decrease of
the frequency in the SS regime. Above, the supersolid excited with the first method shows
an axial breathing amplitude of ∼ 25% and oscillated with a scissors frequency proper of
a BEC. Below, when excited with the second method shows an axial breathing amplitude
of ∼ 10% and a scissors frequency is lower of about 10 ÷ 20% from the BEC value. The
black dashed line indicates the BEC-SS transition.
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4.2 Analysis procedure

To determine the scissors frequency, after the excitation we let the system evolve in trap
for a variable time t. Then we turn off the lasers and let the cloud expand. After a
fixed expansion time texp we take absorption imaging and extrapolate the angle θ(t) by
fitting the density distribution after time-of-flight ñ(kx, ky), with the appropriate rotated
2D distribution. An example of typical raw time-of-flight distributions and relative fitting
functions is shown in figure 4.4.

4.2.1 Scissors analysis

As we discussed in section 3.3.2 the imaging gives the column density of the cloud, so it
is like an effective integration in the z direction. We fit the supersolid with a modulated
gaussian in the x direction and a normal gaussian in the y direction. To extract the angle
oscillation we are interested in the two dimensional momentum distribution ñ(kx, ky) after
the free expansion of the cloud. Since the expansion is isotropic, the angle always changes
the same way during the expansion

To fit the angle of the condensate or the supersolid shown in figure 4.4, we transform
the coordinates in the lab frame (kx, ky) following the usual 2D rigid rotation

• kx → k′
x = kx cos θ − ky sin θ

• ky → k′
y = kx sin θ + ky cos θ

The final 2D fitting function is the product of the 1D density modulation (3.16) times a
gaussian in the y direction and reads

ñ(k′
x, k

′
y) = C0 e

−

(

kx cos θ−ky sin θ

)2

2σ2
x

−

(

kx sin θ+ky sin θ

)2

2σ2
y ×

×
[

1 + C1 cos2

(

kx cos θ − ky sin θ
krot

π + φ

)] (4.1)

where the modulation parameters are the same of the fit (3.16) and (σx, σy) is the width of
the cloud after the expansion. With this fit it is now possible to extrapolate the rotation
angle θ from the density distribution at a fixed time.

To extract the scissors frequency ωsc we plot the angle oscillation by sampling the in
trap evolution time t. The time evolution of the angle θ(t) after the expansion is fitted
with a sinusoide

θ(t) = θ0 + A′ cos
(

√

ω2
sc + τ−2 t+ ϕ

)

e−t/τ (4.2)

where A′ the amplitude after the expansion, τ the damping time, ϕ the oscillation offset
phase and θ0 is the offset angle between the axis of the trap and the axis of the imaging,
constant in every shot.

While the scissors frequency is not affected by the expansion [15], the evolution of
the amplification factor A′/A, where A is the in trap amplitude oscillation, depends on
the non-trivial change of the shape of the cloud and therefore is not easy to determine.
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4.2 – Analysis procedure

Figure 4.4: Experiment vs fit: On the left: images taken with an expansion time of 95
ms. On the right: the correspondent two dimensional fit. Above: an elliptical BEC rotated
of an angle θ′. Below: a stripes array typical of the expanded 1D supersolid.

Nevertheless it has been demonstrated that for times texp ≫ 1/ωsc approaches the value of
∼ 2 regardless the trap geometry [54].

An example of the evolution of θ(t) is shown in figure 4.5 for two different εdd: in the
BEC regime (εdd = 1.2) and in the supersolid regime (εdd = 1.5). Each data point in the
figure is the average of 4 and 10 images. The maximum time of the oscillation in trap is
restricted by the lifetime of the system. As discussed in section 3.3.3 three-body losses is
the main contribution that lowers its lifetime. For a BEC the lifetime can be as long as
1000 ms, but for a SS and a DC it is much lower, due to the high density of the droplets.
For a BEC is sufficient to study the first 200 ms to have low uncertainty on the scissors
frequency, while for a SS because the lifetime does not exceed 100 ms the uncertainty is
higher.

4.2.2 Finite temperature analysis

Finite temperature analysis in our system was made for two important reasons. The first
and more intuitive reason is to demonstrate that our system is in the collisionless regime.
Following the discussion in section 2.3.2, in this regime a thermal cloud oscillates with two
frequencies; therefore the emergence of a single frequency in the scissors mode is a direct
consequence of superfluidity. The second, and more subtle reason, is to speculate what
effects can have the temperature on the scissors frequency of the supersolid.

Creating a ”hot“ supersolid, i.e., with a large thermal fraction, is in general difficult.
We achieve supersolidity only with the coldest condensates, without an observable thermal
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Figure 4.5: Scissors oscillation of a BEC and a SS: A scissors oscillation of a BEC
(above) and a supersolid (below). For every time t has been taken between 4 and 10 images
with a sampling rate of 5 ms. The dots are the weighted average and the line is the fit
(4.2), from which it is extrapolated the frequency ωsc. The angle of every distribution has
been extrapolated from TOF 2D distribution using the fit (4.1). The lower lifetime of the
supersolid is due to three-body losses.

fraction. Moreover, we are not sure that a dipolar supersolid is in thermal equilibrium [7].
Therefore, we perform the thermal analysis in the BEC regime at εdd = 1.14 , where the
temperature can be easily measured with the following procedure.

In the imaging process explained in section 3.2.3, when the image is taken after TOF, the
sample expands. The velocity distribution of the condensed component follows equation
(3.11), while the velocity distribution of the thermal component is a Maxwell-Boltzmann.
Therefore, it is possible to extrapolate the temperature from the gaussian width of the
thermal cloud with the following relation

(

σ2(tT OF ) − σ2(0)
)

=
kBT

m
t2T OF (4.3)

where σ(0) is the in-trap width. When the thermal fraction is less than ∼ 30% the fitting
analysis cannot distinguish the thermal distribution from the condensed distribution and
the temperature cannot be measured.

As explained in section 3.2.2 the final temperature of the cloud is controlled by evap-
orative cooling, hence to get higher temperatures we performed a shorter evaporation
procedure. In our trap the BEC transition temperature for a cloud with ∼ 4 × 104

atoms is Tc ≈ 60 nK. Since the minimum detectable thermal fraction for a BEC is ap-
proximately 25%, from equation (2.6) the lower observable temperature is approximately
T ≈ 0.6Tc ≈ 35 nK.

As is illustrated in figure 4.6, for T < Tc no detectable thermal fraction was present,
so we measured the scissors frequency only for the superfluid component. The expansion

74



4.2 – Analysis procedure

Figure 4.6: Thermal behaviour: a) The beats of the two frequencies ω± = |ωx ± ωy| of
the scissors mode at T = 1.5Tc ≈ 90 nK oscillating around θ0 ∼ −0.9 rad. Using the fit
(4.4) we measured ω+ = 66 Hz and ω− = 25 Hz, with the same amplitude, implying that
the energy is equally distributed between the modes. The damping time τ of a thermal
cloud is much larger than in a superfluid. b) The scissors frequency is plotted versus the
temperature and is normalized with the non dipolar value ω⊥ =

√

ω2
x + ω2

y (corresponding
to β = α). For the BEC (grey dots) is ωsc ∼ 0.9ω⊥ and increasing the temperature
lowers till about a 10% until for T > Tc (red dots) splits into two frequencies. The dashed
grey (red) line is the theoretical expected value for a BEC (thermal gas in the collisionless
regime).

time was the typical 95 ms. We observed a single frequency at ω ≃ 0.9ω⊥ = 2π × 46
Hz. This result is in very good agreement with equation (2.34) with our experimental
parameters. Increasing the temperature the scissors frequency remains unchanged until
T = 0.7Tc. Then it decreases to ω ≃ 0.8ω⊥ = 2π × 41 Hz at T = 0.8Tc. This decrease in
the frequency can be justified as an effect of the interaction with the thermal component
[55].
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Observation of NCRI in a dipolar supersolid

For T > Tc the cloud became thermal. Because of the higher velocities of the particles
we needed to decrease the expansion time to 4 ms in order to observe the cloud. We
observed two distinct frequencies. As the single frequency fit (4.2) could no longer be used,
we used the following two frequencies fit

θ(t) = θ0 +A′
+ cos

(

√

ω2
+ + τ−2

+ t+ϕ+

)

e−t/τ+ +A′
− cos

(

√

ω2
− + τ−2

− t+ϕ−

)

e−t/τ
− (4.4)

from which we extrapolated the frequencies ω± ≃ 2π × (66, 25) Hz, very close to the ex-
pected values for a weakly interacting thermal gas of ω± = |ωx ± ωy| = 2π × (69, 23) Hz.
From this analysis we can conclude that the system is in the collisionless regime.

In conclusion, the fact that we see that the scissors frequency of the BEC does not
change up to 0.7 Tc, and then decreases only slightly, convinces us that in the supersolid
the scissors frequency is not too influenced by temperature. Also, the supersolid is created
starting from a BEC with the lower temperature achievable, which is below the observable
temperature threshold.

4.3 Results

In the following we will present our experimental results in the BEC an SS regimes of
the scissors frequency. We will use the resulting frequencies to estimate the fraction of
inertia I/Ic in the supersolid, to quantify the NCRI effects. Finally, we will compare the
experimental measure with Leggett’s estimation.

4.3.1 Rotational inertia and superfluid fraction

Using the methods explained in sections 4.1.2 and 4.2.1 we are now able to excite and
measure the scissors frequency. We performed a series of measurement in a cloud with a
typical atom number of N = 3.5×104, with εdd ranging from 1.25 to 1.5. The experimental
values are plotted in the figure 4.7.a. The frequencies are normalized with the in-plane
frequency ω⊥. As explained in section 3.3.1 the uncertainty on εdd of about 3%. With our
current sensibility on the magnetic field, we can manipulate as with Feshbach resonances
to sample only two points in the region of the SS: at εdd ∼ 1.45 and at ∼ 1.5.

In the BEC regime, for εdd < 1.42, in the absence of magnetostriction the frequency
should be independent from εdd, with a value of ωsc = ω⊥. Instead the elongation along
the z-axis increases β and, accordingly to equation (2.34), the system still oscillates with
a single frequency (see figure 4.5), but the oscillation frequency decreases to ωsc ≃ 0.9ω⊥,
and it weakly depends on εdd, in agreement with the mean-field theory, equation (2.1.3).
After the BEC-SS transition, at εdd = 1.45, the frequency clearly reduces of about 10%.
This behavior suggests an abrupt increase of the momentum of inertia of the system in the
supersolid phase.

The experimental results are compared to the theoretical predictions which simulated
a system with atom numbers and trap frequencies similar to our experiment: ωx,y,z =
2π × (20,40,80)Hz. The scissors frequency is calculated with a sum rule approach [39]
and by numerically solving the extended GPE (2.25), with the addition of the rotating
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Figure 4.7: Scissors frequency and fraction of inertia: a) Here is presented the
measured scissors frequency for the BEC (red squares) and the SS (blue dots) along with
the numerical prediction by a sum rule approach of the scissors frequency without the
LHY therm (grey dots) and with the LHY term (black dots). b) The fraction of inertia
is obtained using equation (2.40), with the measured scissors frequency and the simulated
value of β by the Trento’s BEC group [49]. The white dots in the supersolid phase consider
only the geometrical factor on the increase of the rotational inertia, while the black dots
consider also the decrease of the superfluid fraction. The vertical dashed line separating
the BEC and SS regime was determined numerically.

term −ΩLzψ. The two approaches give equal results, and are shown as black point in
figure 4.7. Remarkably, there is excellent agreement between theoretical and experimental
results. The theory gives access also to the system’s deformation β. In particular the
ground state configuration is determined by evolving the eGPE (2.25) in imaginary time.
Both theoretical approaches are only approximations of the real experiment, but they work
pretty well when compared with more microscopic (Monte Carlo) simulations [45].

From the measured scissors frequency we determine the fraction of inertia I/Ic though
equation (2.40), employing the value of β given by the calculated ground state. We used the
value of β given by the theoretical calculated ground state. The resulting values are plotted
in 4.7.b. In the BEC regime the momentum of inertia is about half the classical value and
is compatible with the expected value for a fully superfluid system, equation (2.41). In the
supersolid regime, at εdd = 1.45, the momentum of inertia increases towards the classical
value, however without reaching it. This result provides evidence of non-classical rotational
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Observation of NCRI in a dipolar supersolid

inertia of the supersolid.
The change of I/Ic is in principle due to both the system’s deformation and the de-

creasing of the superfluid fraction when the supersolid forms. To highlight the change of
the superfluid fraction we compared the experimental data of I/Ic in the supersolid regime
with the theoretical prediction for a perfect superfluid with the same density distribution
(white dots in figure 4.7). More directly, we calculate the superfluid fraction from equation
(2.43), employing the experimental frequencies and the theoretical β. The results are shown
in figure 4.8. In the BEC regime, using equation (2.43) we observe fs = 1, as expected
for a dipolar BEC [51]. In the supersolid regime, we can reliably calculate the superfluid
fraction only for the data-points just after the BEC-supersolid transition, at εdd = 1.45.
Remarkably, the superfluid fraction of the supersolid remains very large, fs ∼ 0.9. Given
the measurement uncertainty, fs is compatible with unity and incompatible with zero. This
result demonstrates the superfluid nature of the dipolar supersolid under rotation.

4.3.2 Comparison with Leggett’s model

As shown previously, the superfluid fraction in the supersolid may be lower than one.
Here we compare the measured superfluid fraction with the one predicted from Leggett’s
argument for our system. As discussed in section 1.2.4, in its original argument Leggett
considered a supersolid confined in an annulus geometry of length 2πR much grater than
the supersolid unit cell λ, and thickness d ≪ R, such that the system is effectively one-
dimensional. With proper periodic boundary conditions it is possible to unroll the annulus,
and the system can be mapped to an infinite 1D line with the symmetry defined by the
lattice structure. With this approximation the integral (1.22) is exact when calculated in
the unit cell λ.

Our experimental system is very different from the one considered by Leggett, for at
least two reasons. 1) We have a three-dimensional cloud confined in a cigar-like trap with a
modulation length λ of order of the cloud size. Moreover the rotation is intended in all the
(x, y) plane and not only in a 1D annulus, where the curl’s superfluid velocity can be finite
even without vortices. 2) Leggett’s approach does not consider the intrinsic superfluidity of
each singular droplet, aspect that may be important near the droplet crystal phase where
Leggett’s contribution gives vanishing superfluidity. With this considerations we should
not expect a strict quantitative prediction from Leggett’s argument for our system, but
only a qualitative behaviour.

The white triangles of figure 4.8 show Leggett’s estimation of the value of Q0 with our
density profile ρ(x), i.e., equation (1.22). We estimated the integral in the grey area of
length l ≃ 5µm between the two central peaks. ρ(x) is obtained integrating the numerical
calculated [49] three-dimensional density ρ(x, y, z) in the y and z-directions, and the aver-
aged density is defined as 〈ρ〉 = 1

l

∫ l/2
l/2 ρ(x)dx. This choice of the interval l is motivated by

the necessity of exclude the edges of the system from the calculation, where the inhomo-
geneity of the trap becomes relevant and both the BEC and the SS result in a vanishing
value of Q0, due to the very low density in those regions. The same procedure is performed
in the BEC and SS phase.

In the BEC regime the superfluid fraction is in agreement with the expected value of
a perfect superfluid. In the supersolid regime, fs drops initially to values around 0.25
and decreases further as the system approaches the droplet crystal regime. Such large
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Figure 4.8: Superfluid fraction from BEC to SS: Here we present the observed (red
squares and blue dots) superfluid fraction of our system and the numerical prediction (white
triangles), although the 1D density profile ρ(x) of the supersolid. The large uncertainty on
the supersolid regime is mainly due to the denominator contribution (1 − β2) of equation
(2.43). In the SS phase β ≃ 0.8÷0.9, thus this gives a high value of the standard deviation
σfs

in the calculation of error propagation. On the other hand the simulated values in the
SS regime are low due to the low density contribution at the center of the supersolid. The
evident different values between the calculated superfluid fraction with our measurements
shows the limits of the estimation.

values compared to the helium case are due to the relatively large overlap between density
maxima, see the inset of figure 4.8. The values corresponding to the experimental data are
fs ∼ 0.15, therefore within an order of magnitude from the experimental values.
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Conclusion

In conclusion, in this thesis I have established the superfluid nature of the dipolar supersolid
by characterizing its non-classical rotational inertia. In particular I observed a reduced
moment of inertia (NCRI) when a trapped dipolar supersolid of 162Dy is excited through
the scissors mode. From the measured moment of inertia, I infer a superfluid fraction
which is different from zero and of the order of unity. Since a perfect superfluid rotates
with a momentum of inertia I close to the classical value Ic if its density distribution
not cylindrical symmetric, to observe a reduction of the inertia I/Ic from the BEC to the
supersolid regime I choose to study the scissors mode of a system only weakly deformed.
To achieve such geometry I upgraded the existing experimental setup, implementing new
optical potentials for trapping and manipulating the atoms. I then planned and realized
the excitation scheme for the scissors mode. To avoid the coupling between the scissors and
the axial breathing mode in the supersolid regime, I excited the scissors with a ”gentle” kick
by changing momentarily the power of the optical trap potentials. I studied the scissors
frequency extrapolating the angle oscillation by fitting the expanded column density with a
rotating fitting function, consisting of a two-dimensional gaussian with a modulation in the
direction of the droplets. Accordingly, the angle is fitted with a sinusoid function. Since
three-body losses limits the supersolid lifetime, the oscillation is studied for no more than
∼ 100 ms. To better understand the thermal behaviour of the system, I performed thermal
analysis in the BEC regime. By studying the oscillation above the BEC critical temperature
I demonstrated that our system is in the collisionless regime, confirming the truly superfluid
nature of the oscillation below Tc. On the other hand, exciting the scissors oscillation with
different superfluid fractions I find no frequency dependence from the temperature below
T = 0.7Tc, suggesting that the presence of a residual thermal component at the typical
temperatures of the experiment is irrelevant to the dynamics of the system in the supersolid
regime. Note that a similar analysis for the supersolid regime is not possible, since in our
setup the supersolid can be formed only at the lowest temperatures. Finally I compared
the measured superfluid fraction with the one predicted from Leggett’s argument for our
system. Considering the two different geometries between our system and Leggett’s annular
geometry, we find agreement within an order of magnitude.

The supersolid is particularly interesting when compared to standard superfluids, be-
cause its reduced superfluid fraction is due to the breaking of the translational invariance,
and not to thermal effects. The techniques we have demonstrated, with an improvement
of the measurement precision, might allow testing whether the superfluid fraction of the
supersolid is indeed smaller than unity. Achieving larger systems might also allow studying
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quantitatively the theoretical connection between superfluid fraction and density modula-
tion, as well as observing the appearance of quantized vortices for large angular velocities.
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