

## SEMINARIO

### giovedì 21 aprile 2016 ore 11:00 – Aula 33

## Area della Ricerca CNR di Pisa - Edificio A, piano Terra

# Dr. Stefan HÜELLER

Centre de Physique Théorique, CNRS, Ecole Polytechnique, Palaiseau, France

# Crossed Beam Energy Transfer (CBET) revisited: the role of laser speckles in presence of self-focusing and of beam deflection

#### Abstract.

We investigate Crossed Beam Energy Transport (CBET) between intense 'smoothed' laser beams commonly used for high power laser beams. This is currently of high interest in both the direct- and indirect ignition schemes for laser fusion. In expanding laser plasmas, the transfer between beams of equal wave length occurs where the expansion velocity is close to the sound speed. A recent study [1] shows that CBET is relatively well understood for the regime of moderate laser beam intensities,  $IL\lambda 2L < 2 \times 1014$ W/cm2µm2.

At higher intensities, where one or both crossing beams are subject to self-focusing, the energy exchange is modified due to both (i) self-focusing laser speckles, and (ii) due to laser beam deflection [2, 3, 4, 5]. The latter considerably modifies the angular spectrum of the outgoing light with respect to the two separate incoming beams. Important parameters are the speckle size (speckle f-number), the number of laser speckles in the crossing volume, the power of the overall beam and the power in intense laser speckles compared to the self-focusing critical power. Our studies are based on simulations with our multi-dimensional code HARMONY.

#### References

- [1] A. Colaitis, S. Hüller, D. Pesme, G. Duchateau, and V. T. Tikhonchuk, Phys. Plasmas 23, 032118 (2016).
- [2] R. W. Short, R. Bingham, and E. A. Williams, Phys. Fluids 25, 2302 (1982).
- [3] A. J. Schmitt, Phys. Fluids B 1, 1287 (1989).
- [4] F. Cornolti and M. Lucchesi, Plasma Phys. Contr. Fusion 31, 213 (1989).
- [5] H. A. Rose, Phys. Plasmas 3, 1709 (1996).