

AVVISO DI SEMINARIO

Il giorno venerdi 30 maggio 2011 alle ore 11,45

presso l'Area della Ricerca di Pisa, Aula 44, primo piano, Edificio "A"

Il Prof. Davide Bleiner

Institute for Applied Physics, University of Bern

Bern, Switzerland

e-mail:bleiner@iap.unibe.ch

terrà un seminario sul tema:

Short-Wavelength Plasma Radiation for Table-top Nano-Inspection

The characterization and fabrication of nano-structured materials, such as those for plasmonics, nanophotonics, *etc.* demands "enabling tools" for nano-scale imaging or spectroscopy. The factor to boost R&D is that of having *short-wavelength* sources *in the own lab.* In fact, *Extreme UV or X-ray (XUV,* $\lambda = 5$ —50nm) sources accessible on a beam-time basis, i.e. accelerator sources like synchrotrons or free-electron lasers, do bottleneck the research and impede any method-optimization within the approved beamtime shifts. *Plasma*-based XUV radiation combines a number of state-of-art figures-of-merit, such as high brightness, spectral purity, photon counts, and if needed also coherence, with a table-top footprint.

Fundamental and applied research thus contribute to the enabling of a lab-scale nanoinspection tool. The system integration of a facility with "EUV Light for Actinic Nanoinspection" ("ELAN") is an ongoing Swiss National Science Foundation project since 2012. Three main steps are required for demonstrating a competitive lab-scale EUV tool: (i) the integration of a table-top source, and (ii) front-end imaging/spectroscopy units, coupled to a table-top XUV plasma-source; (iii) the comparison of performance with state-of-art accelerator-sources to pinpoint scopes. The expected microscopy resolution is at a level of <10 λ , limited by the optics aberration.

Therefore further improvement is shown by means of "lensless" (coherent diffraction) imaging. Complementary spectroscopic inspection by means of photoelectron or photoion "time-of-flight" provides a "morpho-chemical" mapping of the nano-sample. A number of scientific cases in nanoscience will profit from the availability of a lab-scale EUV source in the next few years.